BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28518275)

  • 1. MO-F-213AB-02: Correcting Spread-Out Bragg Peak Slope Using Time-Resolved Monte Carlo Simulations and Beam Current Modulation.
    Hill P; Klein E; Bloch C
    Med Phys; 2012 Jun; 39(6Part21):3871-3872. PubMed ID: 28518275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MO-F-213AB-01: Improving Dose Uniformity in Patch-Field Proton Therapy Using Beam Current Modulation.
    Hill P; Klein E; Bloch C
    Med Phys; 2012 Jun; 39(6Part21):3871. PubMed ID: 28518230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spread-out Bragg peak proton FLASH irradiation using a clinical synchrocyclotron: Proof of concept and ion chamber characterization.
    Darafsheh A; Hao Y; Zhao X; Zwart T; Wagner M; Evans T; Reynoso F; Zhao T
    Med Phys; 2021 Aug; 48(8):4472-4484. PubMed ID: 34077590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing field patching in passively scattered proton therapy with the use of beam current modulation.
    Hill PM; Klein EE; Bloch C
    Phys Med Biol; 2013 Aug; 58(16):5527-39. PubMed ID: 23880635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TOPAS Simulation of the Mevion S250 compact proton therapy unit.
    Prusator M; Ahmad S; Chen Y
    J Appl Clin Med Phys; 2017 May; 18(3):88-95. PubMed ID: 28444840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of FLASH proton beams using a track-repeating algorithm.
    Wang Q; Titt U; Mohan R; Guan F; Zhao Y; Yang M; Yepes P
    Med Phys; 2022 Oct; 49(10):6684-6698. PubMed ID: 35900902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-T-471: Beam Properties of an In-Room Proton Therapy Accelerator.
    Bloch C; Hill P; Klein E
    Med Phys; 2012 Jun; 39(6Part17):3813. PubMed ID: 28517477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.
    Sánchez-Parcerisa D; Pourbaix JC; Ainsley CG; Dolney D; Carabe A
    Phys Med Biol; 2014 Apr; 59(7):N19-26. PubMed ID: 24625619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation.
    Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK
    Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system.
    Baradaran-Ghahfarokhi M; Reynoso F; Prusator MT; Sun B; Zhao T
    J Appl Clin Med Phys; 2020 Feb; 21(2):26-37. PubMed ID: 31898873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.
    Cho S; Lee S; Shin J; Min B; Chung K; Shin D; Lim Y; Park S
    Med Phys; 2012 Jun; 39(6Part12):3740. PubMed ID: 28517823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of current modulation function for proton spread-out Bragg peak fields.
    Lu HM; Kooy H
    Med Phys; 2006 May; 33(5):1281-7. PubMed ID: 16752563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating a spread-out Bragg peak in proton beams.
    Jette D; Chen W
    Phys Med Biol; 2011 Jun; 56(11):N131-8. PubMed ID: 21558588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased flexibility and efficiency of a double-scattering FLASH proton beamline configuration for
    Hachadorian R; Cascio E; Schuemann J
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37369231
    [No Abstract]   [Full Text] [Related]  

  • 16. Monte Carlo simulations and dose measurements of 2D range-modulators for scanned particle therapy.
    Simeonov Y; Weber U; Schuy C; Engenhart-Cabillic R; Penchev P; Durante M; Zink K
    Z Med Phys; 2021 May; 31(2):203-214. PubMed ID: 32711939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of spread-out bragg peaks in proton beams using Geant4/TOPAS.
    Velten C; Tomé WA
    Biomed Phys Eng Express; 2020 May; 6(4):047001. PubMed ID: 33444283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose and dose averaged LET comparison of ¹H, ⁴He, ⁶Li, ⁸Be, ¹⁰B, ¹²C, ¹⁴N, and ¹⁶O ion beams forming a spread-out Bragg peak.
    Kantemiris I; Karaiskos P; Papagiannis P; Angelopoulos A
    Med Phys; 2011 Dec; 38(12):6585-91. PubMed ID: 22149840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the proton LET using thin film solar cells coated with scintillating powder.
    Jeong S; Kim C; An S; Kwon YC; Pak SI; Cheon W; Shin D; Lim Y; Jeong JH; Kim H; Lee SB
    Med Phys; 2023 Feb; 50(2):1194-1204. PubMed ID: 36135795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiobiological significance of beamline dependent proton energy distributions in a spread-out Bragg peak.
    Paganetti H; Goitein M
    Med Phys; 2000 May; 27(5):1119-26. PubMed ID: 10841418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.