These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28518705)
1. TU-E-217BCD-11: Evaluating the Performance of a Stationary Digital Breast Tomosynthesis System. Tucker A; Gidcumb E; Shan J; Qian X; Sprenger F; Spronk D; Zhang Y; Kennedy D; Farbizio T; Ruth C; Jing Z; Lu J; Zhou O Med Phys; 2012 Jun; 39(6Part24):3916. PubMed ID: 28518705 [TBL] [Abstract][Full Text] [Related]
2. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array. Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630 [TBL] [Abstract][Full Text] [Related]
3. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system. Tucker AW; Lu J; Zhou O Med Phys; 2013 Mar; 40(3):031917. PubMed ID: 23464332 [TBL] [Abstract][Full Text] [Related]
4. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis. Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069 [TBL] [Abstract][Full Text] [Related]
5. Second generation stationary digital breast tomosynthesis system with faster scan time and wider angular span. Calliste J; Wu G; Laganis PE; Spronk D; Jafari H; Olson K; Gao B; Lee YZ; Zhou O; Lu J Med Phys; 2017 Sep; 44(9):4482-4495. PubMed ID: 28569999 [TBL] [Abstract][Full Text] [Related]
6. Measurements of system sharpness for two digital breast tomosynthesis systems. Marshall NW; Bosmans H Phys Med Biol; 2012 Nov; 57(22):7629-50. PubMed ID: 23123601 [TBL] [Abstract][Full Text] [Related]
7. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions. Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385 [TBL] [Abstract][Full Text] [Related]
8. Effect of source blur on digital breast tomosynthesis reconstruction. Zheng J; Fessler JA; Chan HP Med Phys; 2019 Dec; 46(12):5572-5592. PubMed ID: 31494953 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array. Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159 [TBL] [Abstract][Full Text] [Related]
10. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers. Van de Sompel D; Brady SM; Boone J Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313 [TBL] [Abstract][Full Text] [Related]
11. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations. Yang K; Li X; Liu B Med Phys; 2016 Mar; 43(3):1096-110. PubMed ID: 26936697 [TBL] [Abstract][Full Text] [Related]
12. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study. Shan J; Tucker AW; Lee YZ; Heath MD; Wang X; Foos DH; Lu J; Zhou O Phys Med Biol; 2015 Jan; 60(1):81-100. PubMed ID: 25478786 [TBL] [Abstract][Full Text] [Related]
13. A multiple x-ray-source array (MXA) system with a planar two-dimensional source distribution for digital breast tomosynthesis. Sisniega A; Hernandez AM; Shakeri SA; Morris EA; Boone JM; Siewerdsen JH; Schwoebel PR Med Phys; 2024 Oct; ():. PubMed ID: 39382847 [TBL] [Abstract][Full Text] [Related]
14. Cascaded systems analysis of shift-variant image quality in slit-scanning breast tomosynthesis. Berggren K; Cederström B; Lundqvist M; Fredenberg E Med Phys; 2018 Oct; 45(10):4392-4401. PubMed ID: 30091470 [TBL] [Abstract][Full Text] [Related]
15. TU-E-217BCD-10: Dose Reduction in Digital Breast Tomosynthesis with the Dose Reduction Prior Image Constrained Compressed Sensing (DR-PICCS) Algorithm. Garrett J; Tang J; Zhang Y; Ruth C; Jing Z; Chen GH Med Phys; 2012 Jun; 39(6Part24):3916. PubMed ID: 28518660 [TBL] [Abstract][Full Text] [Related]
16. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging. Hu YH; Zhao W Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637 [TBL] [Abstract][Full Text] [Related]
17. Characterization and preliminary imaging evaluation of a clinical prototype stationary intraoral tomosynthesis system. Inscoe CR; Platin E; Mauriello SM; Broome A; Mol A; Gaalaas LR; Regan Anderson MW; Puett C; Lu J; Zhou O Med Phys; 2018 Nov; 45(11):5172-5185. PubMed ID: 30259988 [TBL] [Abstract][Full Text] [Related]
18. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction. Zheng J; Fessler JA; Chan HP Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719 [TBL] [Abstract][Full Text] [Related]
19. Design and feasibility studies of a stationary digital breast tomosynthesis system. Yang G; Qian X; Phan T; Sprenger F; Sultana S; Calderon-Colon X; Kearse B; Spronk D; Lu J; Zhou O Nucl Instrum Methods Phys Res A; 2011 Aug; 648(Suppl 1):S220-S223. PubMed ID: 21808428 [TBL] [Abstract][Full Text] [Related]
20. Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views. Chan HP; Goodsitt MM; Helvie MA; Zelakiewicz S; Schmitz A; Noroozian M; Paramagul C; Roubidoux MA; Nees AV; Neal CH; Carson P; Lu Y; Hadjiiski L; Wei J Radiology; 2014 Dec; 273(3):675-85. PubMed ID: 25007048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]