BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28519026)

  • 1. SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.
    Carver R; Hogstrom K; Price M; Leblanc J; Harris G
    Med Phys; 2012 Jun; 39(6Part9):3708. PubMed ID: 28519026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time simulator for designing electron dual scattering foil systems.
    Carver RL; Hogstrom KR; Price MJ; LeBlanc JD; Pitcher GM
    J Appl Clin Med Phys; 2014 Nov; 15(6):4849. PubMed ID: 25493509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations.
    Ye SJ; Pareek PN; Spencer S; Duan J; Brezovich IA
    Med Phys; 2005 Jun; 32(6):1460-8. PubMed ID: 16013701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of scattering foil parameters on electron-beam Monte Carlo calculations.
    Bieda MR; Antolak JA; Hogstrom KR
    Med Phys; 2001 Dec; 28(12):2527-34. PubMed ID: 11797957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poster - Thur Eve - 27: Scattering foil redesign for modulated electron radiotherapy.
    Connell T; Seuntjens J
    Med Phys; 2012 Jul; 39(7Part3):4629. PubMed ID: 28516695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The angular and energy distribution of the primary electron beam.
    Keall PJ; Hoban PW
    Australas Phys Eng Sci Med; 1994 Sep; 17(3):116-23. PubMed ID: 7980200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical Note: Monte Carlo study on the reduction in x-ray contamination of therapeutic electron beams for Intraoperative Radiation Therapy by means of improvements in the design of scattering foils.
    Adrich P
    Med Phys; 2019 Aug; 46(8):3378-3384. PubMed ID: 31173366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in electron beam dosimetry with a new scattering foil-applicator system on a CL2100C.
    Klein EE; Low DA; Purdy JA
    Int J Radiat Oncol Biol Phys; 1995 May; 32(2):483-90. PubMed ID: 7751189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some computer graphical user interfaces in radiation therapy.
    Chow JC
    World J Radiol; 2016 Mar; 8(3):255-67. PubMed ID: 27027225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and validation of novel scattering foils for modulated electron radiation therapy.
    Connell T; Seuntjens J
    Phys Med Biol; 2014 May; 59(10):2381-91. PubMed ID: 24743426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sci-Thur AM: Planning - 07: A fast and accurate source model for energy and intensity modulated electron beams.
    Papaconstadopoulos P; Seuntjens J
    Med Phys; 2012 Jul; 39(7Part2):4620. PubMed ID: 28516524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental feasibility study on the use of scattering foil free beams for modulated electron radiotherapy.
    Connell T; Alexander A; Evans M; Seuntjens J
    Phys Med Biol; 2012 Jun; 57(11):3259-72. PubMed ID: 22572043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer gel dosimetry for measuring the dose near thin high-Z materials irradiated with high energy photon beams.
    Warmington LL; Gopishankar N; Broadhurst JH; Watanabe Y
    Med Phys; 2016 Dec; 43(12):6525. PubMed ID: 27908188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams.
    Grusell E; Montelius A; Brahme A; Rikner G; Russell K
    Phys Med Biol; 1994 Dec; 39(12):2201-16. PubMed ID: 15551548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
    McLaughlin DJ; Hogstrom KR; Carver RL; Gibbons JP; Shikhaliev PM; Matthews KL; Clarke T; Henderson A; Liang EP
    Med Phys; 2015 Sep; 42(9):5517-29. PubMed ID: 26328999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo linear accelerator simulation of megavoltage photon beams: independent determination of initial beam parameters.
    Almberg SS; Frengen J; Kylling A; Lindmo T
    Med Phys; 2012 Jan; 39(1):40-7. PubMed ID: 22225273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.