These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2852003)

  • 1. Myeloperoxidase oxidation states involved in myeloperoxidase-oxidase oxidation of thiols.
    Svensson BE
    Biochem J; 1988 Dec; 256(3):751-5. PubMed ID: 2852003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase-oxidase oxidation of cysteamine.
    Svensson BE; Lindvall S
    Biochem J; 1988 Jan; 249(2):521-30. PubMed ID: 2829860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid.
    Kettle AJ; Winterbourn CC
    Biochem J; 1988 Jun; 252(2):529-36. PubMed ID: 2843172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiols as myeloperoxidase-oxidase substrates.
    Svensson BE
    Biochem J; 1988 Jul; 253(2):441-9. PubMed ID: 2845919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abilities of peroxidases to catalyse peroxidase-oxidase oxidation of thiols.
    Svensson BE
    Biochem J; 1988 Dec; 256(3):757-62. PubMed ID: 2852004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase.
    Burner U; Obinger C
    FEBS Lett; 1997 Jul; 411(2-3):269-74. PubMed ID: 9271219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reactions of horseradish peroxidase, lactoperoxidase, and myeloperoxidase with enzymatically generated superoxide.
    Metodiewa D; Dunford HB
    Arch Biochem Biophys; 1989 Jul; 272(1):245-53. PubMed ID: 2544142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase.
    Burner U; Obinger C; Paumann M; Furtmüller PG; Kettle AJ
    J Biol Chem; 1999 Apr; 274(14):9494-502. PubMed ID: 10092633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of human myeloperoxidase with hydrogen peroxide and its true catalase activity.
    Iwamoto H; Kobayashi T; Hasegawa E; Morita Y
    J Biochem; 1987 Jun; 101(6):1407-12. PubMed ID: 2822673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiols as peroxidase substrates.
    Svensson BE; Gräslund A; Ström G; Moldeus P
    Free Radic Biol Med; 1993 Feb; 14(2):167-75. PubMed ID: 8381104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone.
    Kettle AJ; Winterbourn CC
    J Biol Chem; 1992 Apr; 267(12):8319-24. PubMed ID: 1314822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of myeloperoxidase catalyzed oxidation of H
    Garai D; Ríos-González BB; Furtmüller PG; Fukuto JM; Xian M; López-Garriga J; Obinger C; Nagy P
    Free Radic Biol Med; 2017 Dec; 113():551-563. PubMed ID: 29097214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride.
    Winterbourn CC; Garcia RC; Segal AW
    Biochem J; 1985 Jun; 228(3):583-92. PubMed ID: 2992450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation.
    Capeillère-Blandin C
    Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):395-404. PubMed ID: 9820817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes.
    Rosen H; Klebanoff SJ
    J Clin Invest; 1976 Jul; 58(1):50-60. PubMed ID: 180060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection.
    Biaglow JE; Issels RW; Gerweck LE; Varnes ME; Jacobson B; Mitchell JB; Russo A
    Radiat Res; 1984 Nov; 100(2):298-312. PubMed ID: 6093188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A steady-state study on the formation of Compounds II and III of myeloperoxidase.
    Hoogland H; Dekker HL; van Riel C; van Kuilenburg A; Muijsers AO; Wever R
    Biochim Biophys Acta; 1988 Aug; 955(3):337-45. PubMed ID: 2840965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.