These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28520221)
1. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development. Maruyama T; Jiang M; Abbott A; Yu HI; Huang Q; Chrzanowska-Wodnicka M; Chen EI; Hsu W J Bone Miner Res; 2017 Sep; 32(9):1816-1828. PubMed ID: 28520221 [TBL] [Abstract][Full Text] [Related]
2. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Maruyama T; Mirando AJ; Deng CX; Hsu W Sci Signal; 2010 May; 3(123):ra40. PubMed ID: 20501936 [TBL] [Abstract][Full Text] [Related]
3. Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice. McGee-Lawrence ME; Carpio LR; Bradley EW; Dudakovic A; Lian JB; van Wijnen AJ; Kakar S; Hsu W; Westendorf JJ Bone; 2014 Sep; 66():277-86. PubMed ID: 24973690 [TBL] [Abstract][Full Text] [Related]
4. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Day TF; Guo X; Garrett-Beal L; Yang Y Dev Cell; 2005 May; 8(5):739-50. PubMed ID: 15866164 [TBL] [Abstract][Full Text] [Related]
5. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Yu HM; Jerchow B; Sheu TJ; Liu B; Costantini F; Puzas JE; Birchmeier W; Hsu W Development; 2005 Apr; 132(8):1995-2005. PubMed ID: 15790973 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone. Li S; Quarto N; Senarath-Yapa K; Grey N; Bai X; Longaker MT PLoS One; 2015; 10(10):e0138059. PubMed ID: 26431534 [TBL] [Abstract][Full Text] [Related]
7. Runx2 protein represses Axin2 expression in osteoblasts and is required for craniosynostosis in Axin2-deficient mice. McGee-Lawrence ME; Li X; Bledsoe KL; Wu H; Hawse JR; Subramaniam M; Razidlo DF; Stensgard BA; Stein GS; van Wijnen AJ; Lian JB; Hsu W; Westendorf JJ J Biol Chem; 2013 Feb; 288(8):5291-302. PubMed ID: 23300083 [TBL] [Abstract][Full Text] [Related]
8. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation. Liu B; Yu HM; Hsu W Dev Biol; 2007 Jan; 301(1):298-308. PubMed ID: 17113065 [TBL] [Abstract][Full Text] [Related]
9. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Nakamura Y; Inloes JB; Katagiri T; Kobayashi T Mol Cell Biol; 2011 Jul; 31(14):3019-28. PubMed ID: 21576357 [TBL] [Abstract][Full Text] [Related]
10. Increased FGF8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull. Schmidt L; Taiyab A; Melvin VS; Jones KL; Williams T Dis Model Mech; 2018 Jun; 11(6):. PubMed ID: 29752281 [TBL] [Abstract][Full Text] [Related]
11. Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. Yan Y; Tang D; Chen M; Huang J; Xie R; Jonason JH; Tan X; Hou W; Reynolds D; Hsu W; Harris SE; Puzas JE; Awad H; O'Keefe RJ; Boyce BF; Chen D J Cell Sci; 2009 Oct; 122(Pt 19):3566-78. PubMed ID: 19737815 [TBL] [Abstract][Full Text] [Related]
12. β-catenin/cyclin D1 mediated development of suture mesenchyme in calvarial morphogenesis. Mirando AJ; Maruyama T; Fu J; Yu HM; Hsu W BMC Dev Biol; 2010 Nov; 10():116. PubMed ID: 21108844 [TBL] [Abstract][Full Text] [Related]
13. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. Zhang D; Schwarz EM; Rosier RN; Zuscik MJ; Puzas JE; O'Keefe RJ J Bone Miner Res; 2003 Sep; 18(9):1593-604. PubMed ID: 12968668 [TBL] [Abstract][Full Text] [Related]
14. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Maruyama T; Jeong J; Sheu TJ; Hsu W Nat Commun; 2016 Feb; 7():10526. PubMed ID: 26830436 [TBL] [Abstract][Full Text] [Related]
15. Regulatory effects of fibroblast growth factor-8 and tumor necrosis factor-α on osteoblast marker expression induced by bone morphogenetic protein-2. Katsuyama T; Otsuka F; Terasaka T; Inagaki K; Takano-Narazaki M; Matsumoto Y; Sada KE; Makino H Peptides; 2015 Nov; 73():88-94. PubMed ID: 26409788 [TBL] [Abstract][Full Text] [Related]
16. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Maruyama T Keio J Med; 2019; 68(2):42. PubMed ID: 31243185 [TBL] [Abstract][Full Text] [Related]
17. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development. Swarnkar G; Zhang K; Mbalaviele G; Long F; Abu-Amer Y PLoS One; 2014; 9(3):e91421. PubMed ID: 24618907 [TBL] [Abstract][Full Text] [Related]
18. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. Maruyama T; Jiang M; Hsu W J Bone Miner Res; 2013 May; 28(5):1150-9. PubMed ID: 23188710 [TBL] [Abstract][Full Text] [Related]
19. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. Di Pietro L; Barba M; Prampolini C; Ceccariglia S; Frassanito P; Vita A; Guadagni E; Bonvissuto D; Massimi L; Tamburrini G; Parolini O; Lattanzi W Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575385 [TBL] [Abstract][Full Text] [Related]
20. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Fakhry A; Ratisoontorn C; Vedhachalam C; Salhab I; Koyama E; Leboy P; Pacifici M; Kirschner RE; Nah HD Bone; 2005 Feb; 36(2):254-66. PubMed ID: 15780951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]