These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28520394)

  • 1. In Vitro Metabolic Engineering of Amorpha-4,11-diene Biosynthesis at Enhanced Rate and Specific Yield of Production.
    Chen X; Zhang C; Zou R; Stephanopoulos G; Too HP
    ACS Synth Biol; 2017 Sep; 6(9):1691-1700. PubMed ID: 28520394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway].
    Wu T; Wu S; Yin Q; Dai H; Li S; Dong F; Chen B; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1040-8. PubMed ID: 22016988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene.
    Chen X; Zhang C; Zou R; Zhou K; Stephanopoulos G; Too HP
    PLoS One; 2013; 8(11):e79650. PubMed ID: 24278153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent advances in the study of amorpha-4,11-diene synthase and its metabolic engineering].
    Kong JQ; Huang Y; Shen JH; Wang W; Cheng KD; Zhu P
    Yao Xue Xue Bao; 2009 Dec; 44(12):1320-7. PubMed ID: 21351463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast.
    Yuan J; Ching CB
    Biotechnol Bioeng; 2014 Mar; 111(3):608-17. PubMed ID: 24122315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Production of amorpha-4,11-diene in engineered yeasts].
    Kong JQ; Shen JH; Huang Y; Wang W; Cheng KD; Zhu P
    Yao Xue Xue Bao; 2009 Nov; 44(11):1297-303. PubMed ID: 21355330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analysis of Amorpha-4,11-Diene Synthase (ADS) Homologs from Non-Artemisinin-Producing Artemisia Species: The Discovery of Novel Koidzumiol and (+)-α-Bisabolol Synthases.
    Muangphrom P; Seki H; Suzuki M; Komori A; Nishiwaki M; Mikawa R; Fukushima EO; Muranaka T
    Plant Cell Physiol; 2016 Aug; 57(8):1678-88. PubMed ID: 27273626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side Products of Recombinant Amorpha-4,11-diene Synthase and Their Effect on Microbial Artemisinin Production.
    Huang JQ; Li DM; Tian X; Lin JL; Yang L; Xu JJ; Fang X
    J Agric Food Chem; 2021 Feb; 69(7):2168-2178. PubMed ID: 33566615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions.
    Yuan J; Ching CB
    Metab Eng; 2016 Nov; 38():303-309. PubMed ID: 27471067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae.
    Yuan J; Ching CB
    Microb Cell Fact; 2015 Mar; 14():38. PubMed ID: 25889168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Increase of copy number of HMG-CoA reductase and FPP synthase genes improves the amorpha4,11-diene production in engineered yeast].
    Kong JQ; Cheng KD; Wang LN; Zheng XD; Dai JG; Zhu P; Wang W
    Yao Xue Xue Bao; 2007 Dec; 42(12):1314-9. PubMed ID: 18338647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering central metabolic modules of Escherichia coli for improving β-carotene production.
    Zhao J; Li Q; Sun T; Zhu X; Xu H; Tang J; Zhang X; Ma Y
    Metab Eng; 2013 May; 17():42-50. PubMed ID: 23500001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorpha-4,11-diene synthase: a key enzyme in artemisinin biosynthesis and engineering.
    Huang JQ; Fang X
    aBIOTECH; 2021 Sep; 2(3):276-288. PubMed ID: 36303880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.
    Choi SY; Lee HJ; Choi J; Kim J; Sim SJ; Um Y; Kim Y; Lee TS; Keasling JD; Woo HM
    Biotechnol Biofuels; 2016; 9():202. PubMed ID: 27688805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum.
    Houshyani B; Assareh M; Busquets A; Ferrer A; Bouwmeester HJ; Kappers IF
    Metab Eng; 2013 Jan; 15():88-97. PubMed ID: 23154132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic identification of functional residues of
    Fang X; Li JX; Huang JQ; Xiao YL; Zhang P; Chen XY
    Biochem J; 2017 Jun; 474(13):2191-2202. PubMed ID: 28526743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis of amorpha-4,11-diene synthase unraveled and improved by mutability landscape guided engineering.
    Abdallah II; van Merkerk R; Klumpenaar E; Quax WJ
    Sci Rep; 2018 Jul; 8(1):9961. PubMed ID: 29967474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The improvement of amorpha-4,11-diene production by a yeast-conform variant.
    Kong JQ; Wang W; Wang LN; Zheng XD; Cheng KD; Zhu P
    J Appl Microbiol; 2009 Mar; 106(3):941-51. PubMed ID: 19191957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance.
    Divate NR; Chen GH; Divate RD; Ou BR; Chung YC
    Bioengineered; 2017 Sep; 8(5):524-535. PubMed ID: 27937123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.