These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 28520427)
1. Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error. Li H; Brédas JL J Phys Chem Lett; 2017 Jun; 8(11):2507-2512. PubMed ID: 28520427 [TBL] [Abstract][Full Text] [Related]
2. Efficient evaluation of Coulomb interactions in kinetic Monte Carlo simulations of charge transport. Pippig M; Mercuri F J Chem Phys; 2020 Apr; 152(16):164102. PubMed ID: 32357790 [TBL] [Abstract][Full Text] [Related]
3. Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions. Casalegno M; Raos G; Po R J Chem Phys; 2010 Mar; 132(9):094705. PubMed ID: 20210409 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches. Casalegno M; Bernardi A; Raos G J Chem Phys; 2013 Jul; 139(2):024706. PubMed ID: 23862958 [TBL] [Abstract][Full Text] [Related]
5. Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer. Castonguay TC; Wang F J Chem Phys; 2008 Mar; 128(12):124706. PubMed ID: 18376959 [TBL] [Abstract][Full Text] [Related]
6. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants. Chatterjee A; Voter AF J Chem Phys; 2010 May; 132(19):194101. PubMed ID: 20499945 [TBL] [Abstract][Full Text] [Related]
7. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Shuai Z; Geng H; Xu W; Liao Y; André JM Chem Soc Rev; 2014 Apr; 43(8):2662-79. PubMed ID: 24394992 [TBL] [Abstract][Full Text] [Related]
8. Utilizing Data-Driven Optimization to Automate the Parametrization of Kinetic Monte Carlo Models. Kouroudis I; Gößwein M; Gagliardi A J Phys Chem A; 2023 Jul; 127(28):5967-5978. PubMed ID: 37421601 [TBL] [Abstract][Full Text] [Related]
9. Acceleration scheme for particle transport in kinetic Monte Carlo methods. Kaiser W; Gößwein M; Gagliardi A J Chem Phys; 2020 May; 152(17):174106. PubMed ID: 32384840 [TBL] [Abstract][Full Text] [Related]
10. Modeling charge transport in organic photovoltaic materials. Nelson J; Kwiatkowski JJ; Kirkpatrick J; Frost JM Acc Chem Res; 2009 Nov; 42(11):1768-78. PubMed ID: 19848409 [TBL] [Abstract][Full Text] [Related]
11. The prediction of hole mobility in organic semiconductors and its calibration based on the grain-boundary effect. Park JW; Lee KI; Choi YS; Kim JH; Jeong D; Kwon YN; Park JB; Ahn HY; Park JI; Lee HS; Shin J Phys Chem Chem Phys; 2016 Aug; 18(31):21371-80. PubMed ID: 27425259 [TBL] [Abstract][Full Text] [Related]
12. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088 [TBL] [Abstract][Full Text] [Related]
13. Building a kinetic Monte Carlo model with a chosen accuracy. Bhute VJ; Chatterjee A J Chem Phys; 2013 Jun; 138(24):244112. PubMed ID: 23822232 [TBL] [Abstract][Full Text] [Related]
14. A Coupled Molecular Dynamics/Kinetic Monte Carlo Approach for Protonation Dynamics in Extended Systems. Kabbe G; Wehmeyer C; Sebastiani D J Chem Theory Comput; 2014 Oct; 10(10):4221-8. PubMed ID: 26588120 [TBL] [Abstract][Full Text] [Related]
15. Simulating charge transport in organic semiconductors and devices: a review. Groves C Rep Prog Phys; 2017 Feb; 80(2):026502. PubMed ID: 27991440 [TBL] [Abstract][Full Text] [Related]
16. Simulation of loss mechanisms in organic solar cells: A description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method. Groves C; Kimber RG; Walker AB J Chem Phys; 2010 Oct; 133(14):144110. PubMed ID: 20949990 [TBL] [Abstract][Full Text] [Related]
17. An off-lattice, self-learning kinetic Monte Carlo method using local environments. Konwar D; Bhute VJ; Chatterjee A J Chem Phys; 2011 Nov; 135(17):174103. PubMed ID: 22070288 [TBL] [Abstract][Full Text] [Related]
18. Efficient Implementation of Cluster Expansion Models in Surface Kinetic Monte Carlo Simulations with Lateral Interactions: Subtraction Schemes, Supersites, and the Supercluster Contraction. Hess F J Comput Chem; 2019 Nov; 40(30):2664-2676. PubMed ID: 31418885 [TBL] [Abstract][Full Text] [Related]
19. A Kinetic Monte Carlo Study of Fullerene Adsorption within a Pc-PBBA Covalent Organic Framework and Implications for Electron Transport. Koo BT; Berard PG; Clancy P J Chem Theory Comput; 2015 Mar; 11(3):1172-80. PubMed ID: 26579766 [TBL] [Abstract][Full Text] [Related]
20. Charge carrier thermalization in organic diodes. van der Kaap NJ; Koster LJ Sci Rep; 2016 Jan; 6():19794. PubMed ID: 26791095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]