BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28520934)

  • 1. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts.
    Märtens B; Hou L; Amman F; Wolfinger MT; Evguenieva-Hackenberg E; Bläsi U
    Nucleic Acids Res; 2017 Jul; 45(13):7938-7949. PubMed ID: 28520934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs.
    Hou L; Klug G; Evguenieva-Hackenberg E
    RNA Biol; 2013 Mar; 10(3):415-24. PubMed ID: 23324612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nop5 interacts with the archaeal RNA exosome.
    Gauernack AS; Lassek C; Hou L; Dzieciolowski J; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2017 Dec; 591(24):4039-4048. PubMed ID: 29159940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the archaeal exosome.
    Evguenieva-Hackenberg E; Hou L; Glaeser S; Klug G
    Wiley Interdiscip Rev RNA; 2014; 5(5):623-35. PubMed ID: 24789718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iCLIP analysis of RNA substrates of the archaeal exosome.
    Bathke J; Gauernack AS; Rupp O; Weber L; Preusser C; Lechner M; Rossbach O; Goesmann A; Evguenieva-Hackenberg E; Klug G
    BMC Genomics; 2020 Nov; 21(1):797. PubMed ID: 33198623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SmAP2 RNA binding motif in the 3'UTR affects mRNA stability in the crenarchaeum Sulfolobus solfataricus.
    Märtens B; Sharma K; Urlaub H; Bläsi U
    Nucleic Acids Res; 2017 Sep; 45(15):8957-8967. PubMed ID: 28911098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets.
    Märtens B; Bezerra GA; Kreuter MJ; Grishkovskaya I; Manica A; Arkhipova V; Djinovic-Carugo K; Bläsi U
    Life (Basel); 2015 Apr; 5(2):1264-81. PubMed ID: 25905548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localization of RNA degrading proteins and protein complexes in prokaryotes.
    Evguenieva-Hackenberg E; Roppelt V; Lassek C; Klug G
    RNA Biol; 2011; 8(1):49-54. PubMed ID: 21289488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome.
    Roppelt V; Klug G; Evguenieva-Hackenberg E
    FEBS Lett; 2010 Jul; 584(13):2931-6. PubMed ID: 20488184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Analysis of Reconstituted Archaeal Exosomes.
    Evguenieva-Hackenberg E; Gauernack AS; Hou L; Klug G
    Methods Mol Biol; 2020; 2062():63-79. PubMed ID: 31768972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome.
    Hou L; Klug G; Evguenieva-Hackenberg E
    Nucleic Acids Res; 2014 Nov; 42(20):12691-706. PubMed ID: 25326320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, reconstitution, and structure of an archaeal RNA degrading exosome.
    Lorentzen E; Conti E
    Methods Enzymol; 2008; 447():417-35. PubMed ID: 19161854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus.
    Witharana C; Roppelt V; Lochnit G; Klug G; Evguenieva-Hackenberg E
    Biochimie; 2012 Jul; 94(7):1578-87. PubMed ID: 22503705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome.
    Evguenieva-Hackenberg E; Roppelt V; Finsterseifer P; Klug G
    Biochemistry; 2008 Dec; 47(50):13158-68. PubMed ID: 19053279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The archaeal exosome.
    Evguenieva-Hackenberg E
    Adv Exp Med Biol; 2011; 702():29-38. PubMed ID: 21713675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring.
    Lu C; Ding F; Ke A
    PLoS One; 2010 Jan; 5(1):e8739. PubMed ID: 20090900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Walter P; Klein F; Lorentzen E; Ilchmann A; Klug G; Evguenieva-Hackenberg E
    Mol Microbiol; 2006 Nov; 62(4):1076-89. PubMed ID: 17078816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The archaeal exosome localizes to the membrane.
    Roppelt V; Hobel CF; Albers SV; Lassek C; Schwarz H; Klug G; Evguenieva-Hackenberg E
    FEBS Lett; 2010 Jul; 584(13):2791-5. PubMed ID: 20488181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism.
    Cvetkovic MA; Wurm JP; Audin MJ; Schütz S; Sprangers R
    Nat Chem Biol; 2017 May; 13(5):522-528. PubMed ID: 28288106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus.
    Hasenöhrl D; Fabbretti A; Londei P; Gualerzi CO; Bläsi U
    RNA; 2009 Dec; 15(12):2288-98. PubMed ID: 19861425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.