These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 28521066)

  • 1. Optochemical Control of Biological Processes in Cells and Animals.
    Ankenbruck N; Courtney T; Naro Y; Deiters A
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2768-2798. PubMed ID: 28521066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach.
    Liu Q; Deiters A
    Acc Chem Res; 2014 Jan; 47(1):45-55. PubMed ID: 23981235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Induced Dimerization Approaches to Control Cellular Processes.
    Klewer L; Wu YW
    Chemistry; 2019 Sep; 25(54):12452-12463. PubMed ID: 31304989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special Issue on Optochemical and Optogenetic Control of Cellular Processes.
    Deiters A
    Chembiochem; 2018 Jun; 19(12):1198-1200. PubMed ID: 29873157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoswitchable peptides for spatiotemporal control of biological functions.
    Albert L; Vázquez O
    Chem Commun (Camb); 2019 Aug; 55(69):10192-10213. PubMed ID: 31411602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-controlled tools.
    Brieke C; Rohrbach F; Gottschalk A; Mayer G; Heckel A
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8446-76. PubMed ID: 22829531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational control of gene function through optically regulated nucleic acids.
    Darrah KE; Deiters A
    Chem Soc Rev; 2021 Nov; 50(23):13253-13267. PubMed ID: 34739027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in the optical control of protein function through genetic code expansion.
    Courtney T; Deiters A
    Curr Opin Chem Biol; 2018 Oct; 46():99-107. PubMed ID: 30056281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches.
    Baker AS; Deiters A
    ACS Chem Biol; 2014 Jul; 9(7):1398-407. PubMed ID: 24819585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From one-photon to two-photon probes: "caged" compounds, actuators, and photoswitches.
    Bort G; Gallavardin T; Ogden D; Dalko PI
    Angew Chem Int Ed Engl; 2013 Apr; 52(17):4526-37. PubMed ID: 23417981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Targets in Photopharmacology.
    Lerch MM; Hansen MJ; van Dam GM; Szymanski W; Feringa BL
    Angew Chem Int Ed Engl; 2016 Sep; 55(37):10978-99. PubMed ID: 27376241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compendium of chemical and genetic approaches to light-regulated gene transcription.
    Hughes RM
    Crit Rev Biochem Mol Biol; 2018 Oct; 53(5):453-474. PubMed ID: 30040498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the photochemical control of protein function.
    Riggsbee CW; Deiters A
    Trends Biotechnol; 2010 Sep; 28(9):468-75. PubMed ID: 20667607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery.
    Wu T; Yoon H; Xiong Y; Dixon-Clarke SE; Nowak RP; Fischer ES
    Nat Struct Mol Biol; 2020 Jul; 27(7):605-614. PubMed ID: 32541897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering genetically-encoded tools for optogenetic control of protein activity.
    Liu Q; Tucker CL
    Curr Opin Chem Biol; 2017 Oct; 40():17-23. PubMed ID: 28527343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria.
    Hogenkamp F; Hilgers F; Knapp A; Klaus O; Bier C; Binder D; Jaeger KE; Drepper T; Pietruszka J
    Chembiochem; 2021 Feb; 22(3):539-547. PubMed ID: 32914927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetics: A Primer for Chemists.
    O'Banion CP; Lawrence DS
    Chembiochem; 2018 Jun; 19(12):1201-1216. PubMed ID: 29671930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of photolabile protecting groups and their application to the optochemical control of cell signaling.
    Bardhan A; Deiters A
    Curr Opin Struct Biol; 2019 Aug; 57():164-175. PubMed ID: 31132552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.