These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
640 related articles for article (PubMed ID: 28521066)
21. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. Jia S; Sletten EM ACS Chem Biol; 2022 Dec; 17(12):3255-3269. PubMed ID: 34516095 [TBL] [Abstract][Full Text] [Related]
22. Genetically encoded RNA photoswitches as tools for the control of gene expression. Jäschke A FEBS Lett; 2012 Jul; 586(15):2106-11. PubMed ID: 22659185 [TBL] [Abstract][Full Text] [Related]
23. Optochemical genetics. Fehrentz T; Schönberger M; Trauner D Angew Chem Int Ed Engl; 2011 Dec; 50(51):12156-82. PubMed ID: 22109984 [TBL] [Abstract][Full Text] [Related]
24. Optical Manipulation of F-Actin with Photoswitchable Small Molecules. Borowiak M; Küllmer F; Gegenfurtner F; Peil S; Nasufovic V; Zahler S; Thorn-Seshold O; Trauner D; Arndt HD J Am Chem Soc; 2020 May; 142(20):9240-9249. PubMed ID: 32388980 [TBL] [Abstract][Full Text] [Related]
25. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools. Ueda Y; Sato M Chembiochem; 2018 Jun; 19(12):1217-1231. PubMed ID: 29577530 [TBL] [Abstract][Full Text] [Related]
26. Target identification of bioactive compounds. Tashiro E; Imoto M Bioorg Med Chem; 2012 Mar; 20(6):1910-21. PubMed ID: 22104438 [TBL] [Abstract][Full Text] [Related]
27. Design, construction, and validation of optogenetic proteins. O'Banion CP; Goswami A; Lawrence DS Methods Enzymol; 2019; 621():171-190. PubMed ID: 31128778 [TBL] [Abstract][Full Text] [Related]
29. On the Promise of Photopharmacology Using Photoswitches: A Medicinal Chemist's Perspective. Fuchter MJ J Med Chem; 2020 Oct; 63(20):11436-11447. PubMed ID: 32511922 [TBL] [Abstract][Full Text] [Related]
30. SEABED: Small molEcule activity scanner weB servicE baseD. Fenollosa C; Otón M; Andrio P; Cortés J; Orozco M; Goñi JR Bioinformatics; 2015 Mar; 31(5):773-5. PubMed ID: 25348211 [TBL] [Abstract][Full Text] [Related]
31. Small molecule target identification using photo-affinity chromatography. Seo SY; Corson TW Methods Enzymol; 2019; 622():347-374. PubMed ID: 31155061 [TBL] [Abstract][Full Text] [Related]
32. Reversible optogenetic control of protein function and localization. Wu DZ; Lackner RM; Aonbangkhen C; Lampson MA; Chenoweth DM Methods Enzymol; 2019; 624():25-45. PubMed ID: 31370933 [TBL] [Abstract][Full Text] [Related]
33. New approaches for computing ligand-receptor binding kinetics. Bruce NJ; Ganotra GK; Kokh DB; Sadiq SK; Wade RC Curr Opin Struct Biol; 2018 Apr; 49():1-10. PubMed ID: 29132080 [TBL] [Abstract][Full Text] [Related]
34. Control of protein function through optochemical translocation. Engelke H; Chou C; Uprety R; Jess P; Deiters A ACS Synth Biol; 2014 Oct; 3(10):731-6. PubMed ID: 24933258 [TBL] [Abstract][Full Text] [Related]
35. Genetic Code Expansion and Optoproteomics. Chen Y; Lu L; Ye S Yale J Biol Med; 2017 Dec; 90(4):599-610. PubMed ID: 29259524 [TBL] [Abstract][Full Text] [Related]
36. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. Lee HM; Larson DR; Lawrence DS ACS Chem Biol; 2009 Jun; 4(6):409-27. PubMed ID: 19298086 [TBL] [Abstract][Full Text] [Related]
37. Model systems for activation of nucleic acid encoded prodrugs. Jacobsen MF; Cló E; Mokhir A; Gothelf KV ChemMedChem; 2007 Jun; 2(6):793-9. PubMed ID: 17436260 [TBL] [Abstract][Full Text] [Related]
38. Dronpa: A Light-Switchable Fluorescent Protein for Opto-Biomechanics. Jöhr R; Bauer MS; Schendel LC; Kluger C; Gaub HE Nano Lett; 2019 May; 19(5):3176-3181. PubMed ID: 30912662 [TBL] [Abstract][Full Text] [Related]