These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 28521224)
1. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Hu Y; Feng S; Yuan Z; Xu CC; Bassi A Bioresour Technol; 2017 Sep; 239():151-159. PubMed ID: 28521224 [TBL] [Abstract][Full Text] [Related]
2. Effects of aqueous phase circulation and catalysts on hydrothermal liquefaction (HTL) of penicillin residue (PR): Characteristics of the aqueous phase, solid residue and bio oil. Hong C; Wang Z; Si Y; Li Z; Xing Y; Hu J; Li Y Sci Total Environ; 2021 Jul; 776():145596. PubMed ID: 33652310 [TBL] [Abstract][Full Text] [Related]
3. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. Biller P; Madsen RB; Klemmer M; Becker J; Iversen BB; Glasius M Bioresour Technol; 2016 Nov; 220():190-199. PubMed ID: 27567480 [TBL] [Abstract][Full Text] [Related]
4. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
5. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures. Yang W; Li X; Li Z; Tong C; Feng L Bioresour Technol; 2015 Nov; 196():99-108. PubMed ID: 26231129 [TBL] [Abstract][Full Text] [Related]
6. Study on the bio-oil characterization and heavy metals distribution during the aqueous phase recycling in the hydrothermal liquefaction of As-enriched Pteris vittata L. Jiang H; Fan L; Cai C; Hu Y; Zhao F; Ruan R; Yang W Bioresour Technol; 2020 Dec; 317():124031. PubMed ID: 32871332 [TBL] [Abstract][Full Text] [Related]
7. Co-liquefaction of Chlorella and soybean straw for production of bio-crude: Effects of reusing aqueous phase as the reaction medium. Leng S; Jiao H; Liu T; Pan W; Chen J; Chen J; Huang H; Peng H; Wu Z; Leng L; Zhou W Sci Total Environ; 2022 May; 820():153348. PubMed ID: 35077787 [TBL] [Abstract][Full Text] [Related]
8. Low-temperature catalyst based Hydrothermal liquefaction of harmful Macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Kumar V; Kumar S; Chauhan PK; Verma M; Bahuguna V; Joshi HC; Ahmad W; Negi P; Sharma N; Ramola B; Rautela I; Nanda M; Vlaskin MS Sci Rep; 2019 Aug; 9(1):11384. PubMed ID: 31388042 [TBL] [Abstract][Full Text] [Related]
9. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Shakya R; Adhikari S; Mahadevan R; Shanmugam SR; Nam H; Hassan EB; Dempster TA Bioresour Technol; 2017 Nov; 243():1112-1120. PubMed ID: 28764118 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Parsa M; Jalilzadeh H; Pazoki M; Ghasemzadeh R; Abduli M Bioresour Technol; 2018 Feb; 250():26-34. PubMed ID: 29153647 [TBL] [Abstract][Full Text] [Related]
11. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Cao L; Zhang C; Hao S; Luo G; Zhang S; Chen J Bioresour Technol; 2016 Nov; 220():471-478. PubMed ID: 27611031 [TBL] [Abstract][Full Text] [Related]
12. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Cheng F; Jarvis JM; Yu J; Jena U; Nirmalakhandan N; Schaub TM; Brewer CE Bioresour Technol; 2019 Dec; 294():122184. PubMed ID: 31683452 [TBL] [Abstract][Full Text] [Related]
13. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442 [TBL] [Abstract][Full Text] [Related]
14. Review on hydrothermal liquefaction aqueous phase as a valuable resource for biofuels, bio-hydrogen and valuable bio-chemicals recovery. Swetha A; ShriVigneshwar S; Gopinath KP; Sivaramakrishnan R; Shanmuganathan R; Arun J Chemosphere; 2021 Nov; 283():131248. PubMed ID: 34182640 [TBL] [Abstract][Full Text] [Related]
15. Synergistic hydrothermal liquefaction of wheat stalk with homogeneous and heterogeneous catalyst at low temperature. Chen Y; Cao X; Zhu S; Tian F; Xu Y; Zhu C; Dong L Bioresour Technol; 2019 Apr; 278():92-98. PubMed ID: 30684728 [TBL] [Abstract][Full Text] [Related]
16. Catalytic hydrothermal liquefaction of Gracilaria corticata macroalgae: Effects of process parameter on bio-oil up-gradation. Li Y; Zhu C; Jiang J; Yang Z; Feng W; Li L; Guo Y; Hu J Bioresour Technol; 2021 Jan; 319():124163. PubMed ID: 33254444 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations. Hwang H; Lee JH; Choi IG; Choi JW Environ Technol; 2019 May; 40(13):1657-1667. PubMed ID: 29333927 [TBL] [Abstract][Full Text] [Related]
18. Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Yang J; Hong C; Xing Y; Zheng Z; Li Z; Zhao X; Qi C Environ Sci Pollut Res Int; 2021 Feb; 28(7):7621-7635. PubMed ID: 33398733 [TBL] [Abstract][Full Text] [Related]
19. Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO Tian W; Liu R; Wang W; Yin Z; Yi X Bioresour Technol; 2018 Sep; 263():569-575. PubMed ID: 29778796 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]