These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 2852143)

  • 1. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence.
    Hall BG
    Genetics; 1988 Dec; 120(4):887-97. PubMed ID: 2852143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence for an alternative to directed mutation in the bgl operon.
    Mittler JE; Lenski RE
    Nature; 1992 Apr; 356(6368):446-8. PubMed ID: 1557128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On alternatives to selection-induced mutation in the Bgl operon of Escherichia coli.
    Hall BG
    Mol Biol Evol; 1994 Mar; 11(2):159-68. PubMed ID: 8170359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon.
    Desai SK; Nandimath K; Mahadevan S
    Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of cellobiose utilization in Escherichia coli K12.
    Kricker M; Hall BG
    Mol Biol Evol; 1984 Feb; 1(2):171-82. PubMed ID: 6400650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein.
    Defez R; De Felice M
    Genetics; 1981 Jan; 97(1):11-25. PubMed ID: 6266910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.
    Harwani D
    Braz J Microbiol; 2014; 45(4):1139-44. PubMed ID: 25763016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state.
    Kharat AS; Mahadevan S
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2039-2049. PubMed ID: 10931908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization (
    Zhang Z; Zhou K; Tran D; Saier M
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the bgl operon by adaptive mutation.
    Hall BG
    Mol Biol Evol; 1998 Jan; 15(1):1-5. PubMed ID: 9491599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion of DNA activates the cryptic bgl operon in E. coli K12.
    Reynolds AE; Felton J; Wright A
    Nature; 1981 Oct; 293(5834):625-9. PubMed ID: 6270569
    [No Abstract]   [Full Text] [Related]  

  • 12. Activation of a cryptic gene by excision of a DNA fragment.
    Parker LL; Betts PW; Hall BG
    J Bacteriol; 1988 Jan; 170(1):218-22. PubMed ID: 2826393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei.
    Joseph AM; Sonowal R; Mahadevan S
    Arch Microbiol; 2017 Mar; 199(2):247-257. PubMed ID: 27695910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family.
    Somers E; Keijers V; Ptacek D; Halvorsen Ottoy M; Srinivasan M; Vanderleyden J; Faure D
    Mol Gen Genet; 2000 Jul; 263(6):1038-46. PubMed ID: 10954090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains.
    Neelakanta G; Sankar TS; Schnetz K
    Appl Environ Microbiol; 2009 Apr; 75(8):2284-93. PubMed ID: 19233952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background.
    Moorthy S; Mahadevan S
    J Bacteriol; 2002 Jul; 184(14):4033-8. PubMed ID: 12081976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans.
    el Hassouni M; Henrissat B; Chippaux M; Barras F
    J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive and negative regulation of the bgl operon in Escherichia coli.
    Mahadevan S; Reynolds AE; Wright A
    J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IS103, a new insertion element in Escherichia coli: characterization and distribution in natural populations.
    Hall BG; Parker LL; Betts PW; DuBose RF; Sawyer SA; Hartl DL
    Genetics; 1989 Mar; 121(3):423-31. PubMed ID: 2541046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.
    Parker LL; Hall BG
    Genetics; 1988 Jul; 119(3):485-90. PubMed ID: 3042507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.