These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28521550)

  • 1. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.
    May PC; Kreider W; Maxwell AD; Wang YN; Cunitz BW; Blomgren PM; Johnson CD; Park JSH; Bailey MR; Lee D; Harper JD; Sorensen MD
    J Endourol; 2017 Aug; 31(8):786-792. PubMed ID: 28521550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.
    Maxwell AD; Wang YN; Kreider W; Cunitz BW; Starr F; Lee D; Nazari Y; Williams JC; Bailey MR; Sorensen MD
    J Endourol; 2019 Oct; 33(10):787-792. PubMed ID: 31016998
    [No Abstract]   [Full Text] [Related]  

  • 3. Factors Affecting Tissue Cavitation during Burst Wave Lithotripsy.
    Maxwell AD; Hunter C; Cunitz BW; Kreider W; Totten S; Wang YN
    Ultrasound Med Biol; 2021 Aug; 47(8):2286-2295. PubMed ID: 34078545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury.
    Handa RK; Territo PR; Blomgren PM; Persohn SA; Lin C; Johnson CD; Jiang L; Connors BA; Hutchins GD
    Urolithiasis; 2017 Oct; 45(5):507-513. PubMed ID: 28074231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy.
    Connors BA; Evan AP; Blomgren PM; Hsi RS; Harper JD; Sorensen MD; Wang YN; Simon JC; Paun M; Starr F; Cunitz BW; Bailey MR; Lingeman JE
    J Urol; 2014 Jan; 191(1):235-41. PubMed ID: 23917165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy.
    Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE
    J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation of Stones by Burst Wave Lithotripsy in the First 19 Humans.
    Harper JD; Lingeman JE; Sweet RM; Metzler IS; Sunaryo PL; Williams JC; Maxwell AD; Thiel J; Cunitz BW; Dunmire B; Bailey MR; Sorensen MD
    J Urol; 2022 May; 207(5):1067-1076. PubMed ID: 35311351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute.
    Handa RK; McAteer JA; Evan AP; Connors BA; Pishchalnikov YA; Gao S
    J Urol; 2009 Feb; 181(2):884-9. PubMed ID: 19095269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Burst Wave Lithotripsy Effectiveness for Small Stones and Fragments by Increasing Frequency: Theoretical Modeling and
    Bailey MR; Maxwell AD; Cao S; Ramesh S; Liu Z; Williams JC; Thiel J; Dunmire B; Colonius T; Kuznetsova E; Kreider W; Sorensen MD; Lingeman JE; Sapozhnikov OA
    J Endourol; 2022 Jul; 36(7):996-1003. PubMed ID: 35229652
    [No Abstract]   [Full Text] [Related]  

  • 10. An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model.
    Wang YN; Kreider W; Hunter C; Cunitz BW; Thiel J; Starr F; Dai JC; Nazari Y; Lee D; Williams JC; Bailey MR; Maxwell AD
    Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication, and characterization of broad beam transducers for fragmenting large renal calculi with burst wave lithotripsy.
    Randad A; Ghanem MA; Bailey MR; Maxwell AD
    J Acoust Soc Am; 2020 Jul; 148(1):44. PubMed ID: 32752768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of acute post-shock wave lithotripsy renal changes by dynamic magnetic resonance imaging: a prospective clinical study.
    Sheir KZ; El-Ghar MA; Elshal AM; Elsaadany MM; Taha DE; El-Nahas AR
    J Urol; 2014 Dec; 192(6):1705-9. PubMed ID: 24977320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of novel burst wave lithotripsy and ultrasonic propulsion technology for the treatment of ureteral calculi in a bottlenose dolphin (Tursiops truncatus) and renal calculi in a harbor seal (Phoca vitulina).
    Holmes AE; Chew BH; Laughlin R; Buckley J; Kiewice E; Dancel MJ; Blasko D; Wong VKF; Halawani A; Koo KC; Corl D; Fasolo P; Levy O; Thiel J; Bailey MR; Eichman J; Meegan JM; Haulena M
    Urolithiasis; 2024 Jan; 52(1):21. PubMed ID: 38189835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonographic evaluation of the kidney following extracorporeal shock wave lithotripsy.
    Kaude JV; Williams JL; Wright PG; Bush D; Derau C; Newman RC
    J Ultrasound Med; 1987 Jun; 6(6):299-306. PubMed ID: 3302295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
    Zwaschka TA; Ahn JS; Cunitz BW; Bailey MR; Dunmire B; Sorensen MD; Harper JD; Maxwell AD
    J Endourol; 2018 Apr; 32(4):344-349. PubMed ID: 29433329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is quantitative diffusion-weighted MRI a valuable technique for the detection of changes in kidneys after extracorporeal shock wave lithotripsy?
    Hocaoglu E; Inci E; Aydin S; Cesme DH; Kalfazade N
    Int Braz J Urol; 2015; 41(1):139-46. PubMed ID: 25928520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focused ultrasound to expel calculi from the kidney: safety and efficacy of a clinical prototype device.
    Harper JD; Sorensen MD; Cunitz BW; Wang YN; Simon JC; Starr F; Paun M; Dunmire B; Liggitt HD; Evan AP; McAteer JA; Hsi RS; Bailey MR
    J Urol; 2013 Sep; 190(3):1090-5. PubMed ID: 23583535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation detection during shock-wave lithotripsy.
    Bailey MR; Pishchalnikov YA; Sapozhnikov OA; Cleveland RO; McAteer JA; Miller NA; Pishchalnikova IV; Connors BA; Crum LA; Evan AP
    Ultrasound Med Biol; 2005 Sep; 31(9):1245-56. PubMed ID: 16176791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: part 1.
    Chang CC; Liang SM; Pu YR; Chen CH; Manousakas I; Chen TS; Kuo CL; Yu FM; Chu ZF
    J Urol; 2001 Jul; 166(1):28-32. PubMed ID: 11435816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective comparison of plain abdominal radiography with conventional and digital renal tomography in assessing renal extracorporeal shock wave lithotripsy patients.
    Sacks EM; Fajardo LL; Hillman BJ; Drach GW; Gaines JA; Claypool HR; Clinger NJ; Fillmore DJ; Hunt KR; Pond GD
    J Urol; 1990 Dec; 144(6):1341-6. PubMed ID: 2231921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.