BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2852172)

  • 1. Optical recording of electrical activity from axons and glia of frog optic nerve: potentiometric dye responses and morphometrics.
    Konnerth A; Orkand PM; Orkand RK
    Glia; 1988; 1(3):225-32. PubMed ID: 2852172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-sensitive dyes measure potential changes in axons and glia of the frog optic nerve.
    Konnerth A; Orkand RK
    Neurosci Lett; 1986 May; 66(1):49-54. PubMed ID: 3487054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in ultrastructure and voltage-dependent currents at the glia limitans of the frog optic nerve following retinal ablation.
    Blanco RE; Marrero H; Orkand PM; Orkand RK
    Glia; 1993 Jun; 8(2):97-105. PubMed ID: 8406678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation of voltage-gated ion channels in frog neuroglia by nerve impulses.
    Marrero H; Astion ML; Coles JA; Orkand RK
    Nature; 1989 Jun; 339(6223):378-80. PubMed ID: 2471079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber.
    Beshay JE; Hahn P; Beshay VE; Hargittai PT; Lieberman EM
    Glia; 2005 Aug; 51(2):121-31. PubMed ID: 15789432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signaling of glial cells along mammalian axons.
    Kriegler S; Chiu SY
    J Neurosci; 1993 Oct; 13(10):4229-45. PubMed ID: 7692011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processes and components participating in the generation of intrinsic optical signal changes in vitro.
    Buchheim K; Wessel O; Siegmund H; Schuchmann S; Meierkord H
    Eur J Neurosci; 2005 Jul; 22(1):125-32. PubMed ID: 16029202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength dependence of optical action potentials in the isolated rat atrium.
    Sakai T
    Jpn J Physiol; 2005 Dec; 55(6):389-93. PubMed ID: 16285889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optic nerve: a model for axon-glial interactions.
    Bolton S; Butt AM
    J Pharmacol Toxicol Methods; 2005; 51(3):221-33. PubMed ID: 15862467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotransmitter-mediated signaling between axons and glial cells.
    Chiu SY; Kriegler S
    Glia; 1994 Jun; 11(2):191-200. PubMed ID: 7927647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conduction failures in rabbit saphenous nerve unmyelinated fibers.
    Zhu ZR; Tang XW; Wang WT; Ren W; Xing JL; Zhang JR; Duan JH; Wang YY; Jiao X; Hu SJ
    Neurosignals; 2009; 17(3):181-95. PubMed ID: 19295243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential contribution of sodium channel subtypes to action potential generation in unmyelinated human C-type nerve fibers.
    Lang PM; Hilmer VB; Grafe P
    Anesthesiology; 2007 Sep; 107(3):495-501. PubMed ID: 17721253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prolonged after-potentials of the myelinated nervous fibres in amphibia after 4-aminopyridine-induced blockage of potassium channels].
    Kuznetsova IV; Evstigneev DA; Glukhova NV
    Fiziol Zh (1994); 2007; 53(3):61-9. PubMed ID: 17725045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve.
    Black JA; Waxman SG; Ransom BR; Feliciano MD
    Brain Res; 1986 Aug; 380(1):122-35. PubMed ID: 2428420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon.
    Salzberg BM; Obaid AL; Bezanilla F
    Jpn J Physiol; 1993; 43 Suppl 1():S37-41. PubMed ID: 8271515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axon dependent glial changes during optic fiber regeneration in the goldfish.
    Levine RL
    J Comp Neurol; 1993 Jul; 333(4):543-53. PubMed ID: 8370816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perforated microelectrode arrays implanted in the regenerating adult central nervous system.
    Heiduschka P; Romann I; Stieglitz T; Thanos S
    Exp Neurol; 2001 Sep; 171(1):1-10. PubMed ID: 11520116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of janusin (J1-160/180) in the retina and optic nerve of the developing and adult mouse.
    Bartsch U; Pesheva P; Raff M; Schachner M
    Glia; 1993 Sep; 9(1):57-69. PubMed ID: 8244531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth cones of regenerating retinal axons contact a variety of cellular profiles in the transected goldfish optic nerve.
    Strobel G; Stuermer CA
    J Comp Neurol; 1994 Aug; 346(3):435-48. PubMed ID: 7527807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.