These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2852172)

  • 1. Optical recording of electrical activity from axons and glia of frog optic nerve: potentiometric dye responses and morphometrics.
    Konnerth A; Orkand PM; Orkand RK
    Glia; 1988; 1(3):225-32. PubMed ID: 2852172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-sensitive dyes measure potential changes in axons and glia of the frog optic nerve.
    Konnerth A; Orkand RK
    Neurosci Lett; 1986 May; 66(1):49-54. PubMed ID: 3487054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in ultrastructure and voltage-dependent currents at the glia limitans of the frog optic nerve following retinal ablation.
    Blanco RE; Marrero H; Orkand PM; Orkand RK
    Glia; 1993 Jun; 8(2):97-105. PubMed ID: 8406678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation of voltage-gated ion channels in frog neuroglia by nerve impulses.
    Marrero H; Astion ML; Coles JA; Orkand RK
    Nature; 1989 Jun; 339(6223):378-80. PubMed ID: 2471079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber.
    Beshay JE; Hahn P; Beshay VE; Hargittai PT; Lieberman EM
    Glia; 2005 Aug; 51(2):121-31. PubMed ID: 15789432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signaling of glial cells along mammalian axons.
    Kriegler S; Chiu SY
    J Neurosci; 1993 Oct; 13(10):4229-45. PubMed ID: 7692011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processes and components participating in the generation of intrinsic optical signal changes in vitro.
    Buchheim K; Wessel O; Siegmund H; Schuchmann S; Meierkord H
    Eur J Neurosci; 2005 Jul; 22(1):125-32. PubMed ID: 16029202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength dependence of optical action potentials in the isolated rat atrium.
    Sakai T
    Jpn J Physiol; 2005 Dec; 55(6):389-93. PubMed ID: 16285889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optic nerve: a model for axon-glial interactions.
    Bolton S; Butt AM
    J Pharmacol Toxicol Methods; 2005; 51(3):221-33. PubMed ID: 15862467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotransmitter-mediated signaling between axons and glial cells.
    Chiu SY; Kriegler S
    Glia; 1994 Jun; 11(2):191-200. PubMed ID: 7927647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conduction failures in rabbit saphenous nerve unmyelinated fibers.
    Zhu ZR; Tang XW; Wang WT; Ren W; Xing JL; Zhang JR; Duan JH; Wang YY; Jiao X; Hu SJ
    Neurosignals; 2009; 17(3):181-95. PubMed ID: 19295243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential contribution of sodium channel subtypes to action potential generation in unmyelinated human C-type nerve fibers.
    Lang PM; Hilmer VB; Grafe P
    Anesthesiology; 2007 Sep; 107(3):495-501. PubMed ID: 17721253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prolonged after-potentials of the myelinated nervous fibres in amphibia after 4-aminopyridine-induced blockage of potassium channels].
    Kuznetsova IV; Evstigneev DA; Glukhova NV
    Fiziol Zh (1994); 2007; 53(3):61-9. PubMed ID: 17725045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve.
    Black JA; Waxman SG; Ransom BR; Feliciano MD
    Brain Res; 1986 Aug; 380(1):122-35. PubMed ID: 2428420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon.
    Salzberg BM; Obaid AL; Bezanilla F
    Jpn J Physiol; 1993; 43 Suppl 1():S37-41. PubMed ID: 8271515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axon dependent glial changes during optic fiber regeneration in the goldfish.
    Levine RL
    J Comp Neurol; 1993 Jul; 333(4):543-53. PubMed ID: 8370816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perforated microelectrode arrays implanted in the regenerating adult central nervous system.
    Heiduschka P; Romann I; Stieglitz T; Thanos S
    Exp Neurol; 2001 Sep; 171(1):1-10. PubMed ID: 11520116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of janusin (J1-160/180) in the retina and optic nerve of the developing and adult mouse.
    Bartsch U; Pesheva P; Raff M; Schachner M
    Glia; 1993 Sep; 9(1):57-69. PubMed ID: 8244531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth cones of regenerating retinal axons contact a variety of cellular profiles in the transected goldfish optic nerve.
    Strobel G; Stuermer CA
    J Comp Neurol; 1994 Aug; 346(3):435-48. PubMed ID: 7527807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.