BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28521755)

  • 1. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms.
    Groendahl S; Fink P
    BMC Ecol; 2017 May; 17(1):20. PubMed ID: 28521755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between cyanobacteria and gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification.
    Lance E; Brient L; Bormans M; Gérard C
    Aquat Toxicol; 2006 Aug; 79(2):140-8. PubMed ID: 16837077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Diet Mixing on a Nonselective Herbivore.
    Groendahl S; Fink P
    PLoS One; 2016; 11(7):e0158924. PubMed ID: 27391787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between cyanobacteria and gastropods II. Impact of toxic Planktothrix agardhii on the life-history traits of Lymnaea stagnalis.
    Lance E; Paty C; Bormans M; Brient L; Gérard C
    Aquat Toxicol; 2007 Mar; 81(4):389-96. PubMed ID: 17292488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of microcystin-producing cyanobacteria on reproductive success of Lymnaea stagnalis (Gastropoda, Pulmonata) and predicted consequences at the population level.
    Lance E; Alonzo F; Tanguy M; Gérard C; Bormans M
    Ecotoxicology; 2011 Jun; 20(4):719-30. PubMed ID: 21340554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp(®) Flash) stressors.
    Lance E; Desprat J; Holbech BF; Gérard C; Bormans M; Lawton LA; Edwards C; Wiegand C
    Aquat Toxicol; 2016 Aug; 177():116-24. PubMed ID: 27267390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.
    Paerl H
    Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of sterols constrains food quality of cyanobacteria for an invasive freshwater bivalve.
    Basen T; Rothhaupt KO; Martin-Creuzburg D
    Oecologia; 2012 Sep; 170(1):57-64. PubMed ID: 22398861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.
    Paerl HW; Fulton RS; Moisander PH; Dyble J
    ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics.
    Reichwaldt ES; Ghadouani A
    Water Res; 2012 Apr; 46(5):1372-93. PubMed ID: 22169160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diet quality affects chemical tolerance in the freshwater snail Lymnaea stagnalis.
    Fidder BN; Reátegui-Zirena EG; Salice CJ
    Environ Toxicol Chem; 2018 Apr; 37(4):1158-1167. PubMed ID: 29266349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure.
    Loick-Wilde N; Fernández-Urruzola I; Eglite E; Liskow I; Nausch M; Schulz-Bull D; Wodarg D; Wasmund N; Mohrholz V
    Glob Chang Biol; 2019 Mar; 25(3):794-810. PubMed ID: 30628151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histopathology and microcystin distribution in Lymnaea stagnalis (Gastropoda) following toxic cyanobacterial or dissolved microcystin-LR exposure.
    Lance E; Josso C; Dietrich D; Ernst B; Paty C; Senger F; Bormans M; Gérard C
    Aquat Toxicol; 2010 Jul; 98(3):211-220. PubMed ID: 20227118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem consequences of cyanobacteria in the northern Baltic Sea.
    Karjalainen M; Engström-Ost J; Korpinen S; Peltonen H; Pääkkönen JP; Rönkkönen S; Suikkanen S; Viitasalo M
    Ambio; 2007 Apr; 36(2-3):195-202. PubMed ID: 17520934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota.
    Ibelings BW; Havens KE
    Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanobacterial blooms modify food web structure and interactions in western Lake Erie.
    Briland RD; Stone JP; Manubolu M; Lee J; Ludsin SA
    Harmful Algae; 2020 Feb; 92():101586. PubMed ID: 32113601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cost or a benefit? Counterintuitive effects of diet quality and cadmium in Lymnaea stagnalis.
    Reátegui-Zirena EG; Fidder BN; Salice CJ
    Ecotoxicology; 2016 Dec; 25(10):1771-1781. PubMed ID: 27663695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic cyanobacteria induce coupled changes in gut microbiota and co-metabolite of freshwater gastropods.
    Ren X; Zhang J; Huang Y; Yang W; Lu K; Zhu J
    Environ Pollut; 2023 Dec; 338():122651. PubMed ID: 37797925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allelopathic control of cyanobacterial blooms by periphyton biofilms.
    Wu Y; Liu J; Yang L; Chen H; Zhang S; Zhao H; Zhang N
    Environ Microbiol; 2011 Mar; 13(3):604-15. PubMed ID: 21054736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rising atmospheric CO
    Ma J; Wang P
    Sci Total Environ; 2021 Feb; 754():141889. PubMed ID: 32920383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.