These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2852184)

  • 21. [Role of glutamate receptors in the spiral ganglion neuron damage induced by acoustic noise].
    Zhang YM; Ma B; Gao WY; Wen W; Liu HY
    Sheng Li Xue Bao; 2007 Feb; 59(1):103-10. PubMed ID: 17294049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of aminooxyacetic acid and ethacrynic acid with intense sound at the level of the cochlea.
    Kisiel DL; Bobbin RP
    Hear Res; 1982 Feb; 6(2):129-40. PubMed ID: 7061347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochalasin D suppresses sound evoked potentials in the guinea pig cochlea.
    Barron SE; Bobbin RP; Guth P; Norris C
    Hear Res; 1987 Dec; 31(2):147-53. PubMed ID: 3446671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protective effect of basic fibroblast growth factor on auditory hair cells after noise exposure.
    Zhai SQ; Cheng JC; Wang JL; Yang WY; Gu R; Jiang SC
    Acta Otolaryngol; 2002 Jun; 122(4):370-3. PubMed ID: 12125991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Outer hair cells in the mammalian cochlea and noise-induced hearing loss.
    Cody AR; Russell IJ
    Nature; 1985 Jun 20-26; 315(6021):662-5. PubMed ID: 4010777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of intermittent sound stimulation on cochlear microphonics and the possible preventive effect of coenzyme Q10.
    Morimitsu T; Hagiwara T; Ide M; Matsumoto I; Okada S
    Hear Res; 1980 Aug; 3(2):155-66. PubMed ID: 7419483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials.
    Zhang SY; Robertson D; Yates G; Everett A
    J Neurophysiol; 1999 Dec; 82(6):3307-15. PubMed ID: 10601462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Relation between changes in compound action potential tuning curves and the pathology of cochlear hair cells stereocilia].
    Han D
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1991; 26(6):340-3, 382. PubMed ID: 1811689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of perilymphatically perfused gentamicin on microphonic potential, lipid labeling and morphology of cochlear tissues.
    Tachibana M; Anniko M; Schacht J
    Acta Otolaryngol; 1983; 96(1-2):31-8. PubMed ID: 6613550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of increasing perilymph calcium levels on various cochlear potentials].
    Hu L; Dong W; Chen J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 May; 13(2):128-30. PubMed ID: 10074232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modifications of cochlear microphonic frequency responses following transient changes of hydrostatic pressure in the perilymph.
    Legouix JP; Avan P; Lenoir M
    Hear Res; 1986; 23(2):105-13. PubMed ID: 3745014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sarthran preserves cochlear microcirculation and reduces temporary threshold shifts after noise exposure.
    Goldwin B; Khan MJ; Shivapuja B; Seidman MD; Quirk WS
    Otolaryngol Head Neck Surg; 1998 May; 118(5):576-83. PubMed ID: 9591853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intense sound increases the level of an unidentified amine found in perilymph.
    Bobbin RP; Fallon M
    Hear Res; 1992 Nov; 63(1-2):157-62. PubMed ID: 1361182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of elevated potassium concentration in the perilymph on the nonlinearity of cochlear microphonics in the guinea-pig cochlea.
    Avan P; Legouix JP
    Hear Res; 1988 Sep; 35(2-3):159-64. PubMed ID: 3198508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of L-type Ca2+ channels in transmitter release from mammalian inner hair cells. II. Single-neuron activity.
    Robertson D; Paki B
    J Neurophysiol; 2002 Jun; 87(6):2734-40. PubMed ID: 12037175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1992 Aug; 61(1-2):106-16. PubMed ID: 1326504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent hair cell malfunction contributes to hidden hearing loss.
    Mulders WHAM; Chin IL; Robertson D
    Hear Res; 2018 Apr; 361():45-51. PubMed ID: 29477697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of acoustic trauma on the cochlear potentials.
    Gans DP
    J Acoust Soc Am; 1983 Dec; 74(6):1742-6. PubMed ID: 6655132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pure tone overstimulation changes the micromechanical properties of the inner hair cell stereocilia.
    Canlon B; Miller J; Flock A; Borg E
    Hear Res; 1987; 30(1):65-72. PubMed ID: 3680055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.