BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28521956)

  • 1. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil.
    Lombardi L; Mendecka B; Carnevale E
    J Environ Manage; 2018 Jun; 216():235-245. PubMed ID: 28521956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.
    Yano J; Aoki T; Nakamura K; Yamada K; Sakai S
    Waste Manag; 2015 Apr; 38():409-23. PubMed ID: 25670164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the environmental impacts of used cooking oil valorization options in Thailand.
    Thushari I; Babel S
    J Environ Manage; 2022 May; 310():114810. PubMed ID: 35240566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils.
    Talens Peiró L; Villalba Méndez G; Gabarrell i Durany X
    Environ Sci Technol; 2008 Jul; 42(13):4977-81. PubMed ID: 18678036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon.
    Achten WM; Vandenbempt P; Almeida J; Mathijs E; Muys B
    Environ Sci Technol; 2010 Jun; 44(12):4809-15. PubMed ID: 20496929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying global warming potential of alternative biorefinery systems for producing fuels from Chinese food waste.
    Guo H; Zhao Y; Damgaard A; Wang Q; Wang H; Christensen TH; Lu W
    Waste Manag; 2021 Jul; 130():38-47. PubMed ID: 34049266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.
    Brentner LB; Eckelman MJ; Zimmerman JB
    Environ Sci Technol; 2011 Aug; 45(16):7060-7. PubMed ID: 21662987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between Used Cooking Oil Biodiesel Blends and Elastomer Materials in the Diesel Engine.
    Hu ZY; Luo J; Lu ZY; Wang Z; Tan PQ; Lou DM
    ACS Omega; 2021 Feb; 6(7):5046-5055. PubMed ID: 33644613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.
    Leite MB; de Araújo MM; Nascimento IA; da Cruz AC; Pereira SA; do Nascimento NC
    Environ Toxicol Chem; 2011 Apr; 30(4):893-7. PubMed ID: 21184529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of biodiesel production by using impregnated magnetic biochar derived from waste palm kernel shell.
    Anak Erison AE; Tan YH; Mubarak NM; Kansedo J; Khalid M; Abdullah MO; Ghasemi M
    Environ Res; 2022 Nov; 214(Pt 4):114149. PubMed ID: 36007570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.
    Adesanya VO; Cadena E; Scott SA; Smith AG
    Bioresour Technol; 2014 Jul; 163():343-55. PubMed ID: 24852435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algae biodiesel life cycle assessment using current commercial data.
    Passell H; Dhaliwal H; Reno M; Wu B; Ben Amotz A; Ivry E; Gay M; Czartoski T; Laurin L; Ayer N
    J Environ Manage; 2013 Nov; 129():103-11. PubMed ID: 23900083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst.
    Al-Muhtaseb AH; Osman AI; Jamil F; Mehta N; Al-Haj L; Coulon F; Al-Maawali S; Al Nabhani A; Kyaw HH; Zar Myint MT; Rooney DW
    J Environ Manage; 2022 Feb; 304():114319. PubMed ID: 35021592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty propagation in life cycle assessment of biodiesel versus diesel: global warming and non-renewable energy.
    Hong J
    Bioresour Technol; 2012 Jun; 113():3-7. PubMed ID: 22178489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical feasibility of biodiesel production from virgin oil and waste cooking oil: Comparison between traditional and innovative process based on hydrodynamic cavitation.
    Innocenzi V; Prisciandaro M
    Waste Manag; 2021 Mar; 122():15-25. PubMed ID: 33476958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme.
    Razack SA; Duraiarasan S
    Waste Manag; 2016 Jan; 47(Pt A):98-104. PubMed ID: 26248487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical biodiesel production and power cogeneration: technical and economic feasibilities.
    Deshpande A; Anitescu G; Rice PA; Tavlarides LL
    Bioresour Technol; 2010 Mar; 101(6):1834-43. PubMed ID: 19939671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of biodiesel production from rapeseed oil: Influence of process parameters and scale.
    Gupta R; McRoberts R; Yu Z; Smith C; Sloan W; You S
    Bioresour Technol; 2022 Sep; 360():127532. PubMed ID: 35772716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of co-products on the life-cycle impacts of microalgal biodiesel.
    Soratana K; Barr WJ; Landis AE
    Bioresour Technol; 2014 May; 159():157-66. PubMed ID: 24650529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.