These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28521991)

  • 1. NMR characterization of cellulose acetate: Mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances.
    Kono H; Oka C; Kishimoto R; Fujita S
    Carbohydr Polym; 2017 Aug; 170():23-32. PubMed ID: 28521991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of mole fractions of ethyl-cellulose-containing monomers by NMR.
    Kono H
    Carbohydr Res; 2017 Jun; 445():51-60. PubMed ID: 28402900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy.
    Kono H
    Carbohydr Res; 2013 Jun; 375():136-44. PubMed ID: 23707362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR characterization of sodium carboxymethyl cellulose: Substituent distribution and mole fraction of monomers in the polymer chains.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Aug; 146():1-9. PubMed ID: 27112844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains.
    Kono H; Fujita S; Tajima K
    Carbohydr Polym; 2017 Feb; 157():728-738. PubMed ID: 27987985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Oct; 150():241-9. PubMed ID: 27312635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity.
    Kono H; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Mar; 118():91-100. PubMed ID: 25542112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substituent distribution of propyl cellulose studied by nuclear magnetic resonance.
    Kono H; Numata J
    Carbohydr Res; 2020 Sep; 495():108067. PubMed ID: 32739678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ¹H and ¹³C chemical shift assignment of the monomers that comprise carboxymethyl cellulose.
    Kono H
    Carbohydr Polym; 2013 Sep; 97(2):384-90. PubMed ID: 23911461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional NMR data of a series of methylcellulose with different degrees of substitution.
    Kono H
    Data Brief; 2018 Jun; 18():1088-1098. PubMed ID: 29900279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquids as reaction medium in cellulose functionalization.
    Heinze T; Schwikal K; Barthel S
    Macromol Biosci; 2005 Jun; 5(6):520-5. PubMed ID: 15948229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimethylsilylation of cellulose in ionic liquids.
    Mormann W; Wezstein M
    Macromol Biosci; 2009 Apr; 9(4):369-75. PubMed ID: 19031387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of camphorsulfonyl acetate of cellulose.
    Xiao D; Hu J; Zhang M; Li M; Wang G; Yao H
    Carbohydr Res; 2004 Aug; 339(11):1925-31. PubMed ID: 15261585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.
    Huang K; Wang B; Cao Y; Li H; Wang J; Lin W; Mu C; Liao D
    J Agric Food Chem; 2011 May; 59(10):5376-81. PubMed ID: 21452895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation.
    El Nemr A; Ragab S; El Sikaily A
    Carbohydr Polym; 2016 Oct; 151():1058-1067. PubMed ID: 27474655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation.
    Wan Daud WR; Djuned FM
    Carbohydr Polym; 2015 Nov; 132():252-60. PubMed ID: 26256348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride.
    Erdmenger T; Haensch C; Hoogenboom R; Schubert US
    Macromol Biosci; 2007 Apr; 7(4):440-5. PubMed ID: 17429805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.
    Cao B; Du J; Du D; Sun H; Zhu X; Fu H
    Carbohydr Polym; 2016 Sep; 149():348-56. PubMed ID: 27261759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems.
    Remsing RC; Swatloski RP; Rogers RD; Moyna G
    Chem Commun (Camb); 2006 Mar; (12):1271-3. PubMed ID: 16538244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions.
    El Nemr A; Ragab S; El Sikaily A; Khaled A
    Carbohydr Polym; 2015 Oct; 130():41-8. PubMed ID: 26076599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.