BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28522119)

  • 1. Neural changes in Alzheimer's disease from circuit to molecule: Perspective of optogenetics.
    Yang Q; Song D; Qing H
    Neurosci Biobehav Rev; 2017 Aug; 79():110-118. PubMed ID: 28522119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetics: implications for Alzheimer's disease research and therapy.
    Mirzayi P; Shobeiri P; Kalantari A; Perry G; Rezaei N
    Mol Brain; 2022 Feb; 15(1):20. PubMed ID: 35197102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illuminating Neural Circuits in Alzheimer's Disease.
    Ying Y; Wang JZ
    Neurosci Bull; 2021 Aug; 37(8):1203-1217. PubMed ID: 34089505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering memory function with optogenetics.
    Beyeler A; Eckhardt CA; Tye KM
    Prog Mol Biol Transl Sci; 2014; 122():341-90. PubMed ID: 24484707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Up the Brain: The Application of Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits.
    Lee C; Lavoie A; Liu J; Chen SX; Liu BH
    Front Neural Circuits; 2020; 14():18. PubMed ID: 32390806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories.
    Yamamoto N; Marks WD; Kitamura T
    Adv Exp Med Biol; 2021; 1293():429-447. PubMed ID: 33398831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Feasibility of Joint Application of Techniques of Optogenetics and Neuroelectrophysiology to Research of Acupuncture Analgesia].
    He QY; Shen Z; She LJ; Fang JQ; Shao XM
    Zhen Ci Yan Jiu; 2018 Aug; 43(8):476-9. PubMed ID: 30232848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic stimulation: Understanding memory and treating deficits.
    Barnett SC; Perry BAL; Dalrymple-Alford JC; Parr-Brownlie LC
    Hippocampus; 2018 Jul; 28(7):457-470. PubMed ID: 29742814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct pharmacological Akt activation rescues Alzheimer's disease like memory impairments and aberrant synaptic plasticity.
    Yi JH; Baek SJ; Heo S; Park HJ; Kwon H; Lee S; Jung J; Park SJ; Kim BC; Lee YC; Ryu JH; Kim DH
    Neuropharmacology; 2018 Jan; 128():282-292. PubMed ID: 29079294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetics and synaptic plasticity.
    Xie YF; Jackson MF; Macdonald JF
    Acta Pharmacol Sin; 2013 Nov; 34(11):1381-5. PubMed ID: 24162508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoring synaptic plasticity and memory in mouse models of Alzheimer's disease by PKR inhibition.
    Hwang KD; Bak MS; Kim SJ; Rhee S; Lee YS
    Mol Brain; 2017 Dec; 10(1):57. PubMed ID: 29233183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic Plasticity, Dementia and Alzheimer Disease.
    Skaper SD; Facci L; Zusso M; Giusti P
    CNS Neurol Disord Drug Targets; 2017; 16(3):220-233. PubMed ID: 28088900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies.
    Murphy C; Matikainen-Ankney B; Chang YH; Copits B; Creed MC
    Int Rev Neurobiol; 2021; 159():187-219. PubMed ID: 34446246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic Restoration of Disrupted Slow Oscillations Halts Amyloid Deposition and Restores Calcium Homeostasis in an Animal Model of Alzheimer's Disease.
    Kastanenka KV; Hou SS; Shakerdge N; Logan R; Feng D; Wegmann S; Chopra V; Hawkes JM; Chen X; Bacskai BJ
    PLoS One; 2017; 12(1):e0170275. PubMed ID: 28114405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downregulating ANP32A rescues synapse and memory loss via chromatin remodeling in Alzheimer model.
    Chai GS; Feng Q; Wang ZH; Hu Y; Sun DS; Li XG; Ke D; Li HL; Liu GP; Wang JZ
    Mol Neurodegener; 2017 May; 12(1):34. PubMed ID: 28472990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies.
    Kamat PK; Kalani A; Rai S; Swarnkar S; Tota S; Nath C; Tyagi N
    Mol Neurobiol; 2016 Jan; 53(1):648-661. PubMed ID: 25511446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment.
    Zhang H; Sun S; Wu L; Pchitskaya E; Zakharova O; Fon Tacer K; Bezprozvanny I
    J Neurosci; 2016 Nov; 36(47):11837-11850. PubMed ID: 27881772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic stimulation of serotonin nuclei retrieve the lost memory in Alzheimer's disease.
    Bostancıklıoğlu M
    J Cell Physiol; 2020 Feb; 235(2):836-847. PubMed ID: 31332785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer's disease.
    Hashemi-Firouzi N; Komaki A; Soleimani Asl S; Shahidi S
    Brain Res Bull; 2017 Oct; 135():85-91. PubMed ID: 28987281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.