These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28522119)

  • 21. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.
    Ager RR; Davis JL; Agazaryan A; Benavente F; Poon WW; LaFerla FM; Blurton-Jones M
    Hippocampus; 2015 Jul; 25(7):813-26. PubMed ID: 25530343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model.
    Shen Y; Tian M; Zheng Y; Gong F; Fu AKY; Ip NY
    Cell Rep; 2016 Nov; 17(7):1819-1831. PubMed ID: 27829153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alzheimer's Disease, Neural Plasticity, and Functional Recovery.
    Mercerón-Martínez D; Ibaceta-González C; Salazar C; Almaguer-Melian W; Bergado-Rosado JA; Palacios AG
    J Alzheimers Dis; 2021; 82(s1):S37-S50. PubMed ID: 33459642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway.
    Jiang L; Huang M; Xu S; Wang Y; An P; Feng C; Chen X; Wei X; Han Y; Wang Q
    Mol Neurobiol; 2016 Aug; 53(6):3832-3841. PubMed ID: 26160762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's disease.
    Lanté F; Chafai M; Raymond EF; Pereira AR; Mouska X; Kootar S; Barik J; Bethus I; Marie H
    Neuropsychopharmacology; 2015 Jun; 40(7):1772-81. PubMed ID: 25622751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetically inspired deep brain stimulation: linking basic with clinical research.
    Lüscher C; Pollak P
    Swiss Med Wkly; 2016; 146():w14278. PubMed ID: 27045196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PGE
    Maingret V; Barthet G; Deforges S; Jiang N; Mulle C; Amédée T
    Neurobiol Aging; 2017 Feb; 50():13-24. PubMed ID: 27837675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of increased calcineurin activity rescues impaired homeostatic synaptic plasticity in presenilin 1 M146V mutant.
    Kim S; Violette CJ; Ziff EB
    Neurobiol Aging; 2015 Dec; 36(12):3239-3246. PubMed ID: 26455952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing neural circuit mechanisms in Alzheimer's disease using novel technologies.
    Grieco SF; Holmes TC; Xu X
    Mol Psychiatry; 2023 Oct; 28(10):4407-4420. PubMed ID: 36959497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice.
    Clark JK; Furgerson M; Crystal JD; Fechheimer M; Furukawa R; Wagner JJ
    Neurobiol Learn Mem; 2015 Nov; 125():152-162. PubMed ID: 26385257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning to perceive structure from motion and neural plasticity in patients with Alzheimer's disease.
    Kim NG; Park JH
    Neuropsychologia; 2010 Apr; 48(5):1464-71. PubMed ID: 20116388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetics and its application in neural degeneration and regeneration.
    Ordaz JD; Wu W; Xu XM
    Neural Regen Res; 2017 Aug; 12(8):1197-1209. PubMed ID: 28966628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preserved fronto-striatal plasticity and enhanced procedural learning in a transgenic mouse model of Alzheimer's disease overexpressing mutant hAPPswe.
    Middei S; Geracitano R; Caprioli A; Mercuri N; Ammassari-Teule M
    Learn Mem; 2004; 11(4):447-52. PubMed ID: 15286183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1.
    Ohno M; Chang L; Tseng W; Oakley H; Citron M; Klein WL; Vassar R; Disterhoft JF
    Eur J Neurosci; 2006 Jan; 23(1):251-60. PubMed ID: 16420434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity.
    Jang SS; Chung HJ
    Neural Plast; 2016; 2016():7969272. PubMed ID: 27019755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light Modulation of Brain and Development of Relevant Equipment.
    Li X; Liu C; Wang R
    J Alzheimers Dis; 2020; 74(1):29-41. PubMed ID: 32039856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical interrogation of multi-scale neuronal plasticity underlying behavioral learning.
    Tsutsumi S; Hayashi-Takagi A
    Curr Opin Neurobiol; 2021 Apr; 67():8-15. PubMed ID: 32768886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer's disease.
    Zhang H; Liu J; Sun S; Pchitskaya E; Popugaeva E; Bezprozvanny I
    J Alzheimers Dis; 2015; 45(2):561-80. PubMed ID: 25589721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dysregulation of Elongation Factor 1A Expression is Correlated with Synaptic Plasticity Impairments in Alzheimer's Disease.
    Beckelman BC; Day S; Zhou X; Donohue M; Gouras GK; Klann E; Keene CD; Ma T
    J Alzheimers Dis; 2016 Sep; 54(2):669-78. PubMed ID: 27567813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer's disease.
    Koppensteiner P; Trinchese F; Fà M; Puzzo D; Gulisano W; Yan S; Poussin A; Liu S; Orozco I; Dale E; Teich AF; Palmeri A; Ninan I; Boehm S; Arancio O
    Sci Rep; 2016 Sep; 6():32553. PubMed ID: 27581852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.