These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28522346)

  • 1. Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs.
    de Graaf TA; Duecker F; Stankevich Y; Ten Oever S; Sack AT
    Brain Stimul; 2017; 10(4):828-835. PubMed ID: 28522346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.
    Samaha J; Gosseries O; Postle BR
    J Neurosci; 2017 Mar; 37(11):2824-2833. PubMed ID: 28179556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphene thresholds evoked by transcranial magnetic stimulation are insensitive to short-lasting variations in ambient light.
    Kammer T; Beck S
    Exp Brain Res; 2002 Aug; 145(3):407-10. PubMed ID: 12136391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent changes in cortical excitability after prolonged visual deprivation.
    Pitskel NB; Merabet LB; Ramos-Estebanez C; Kauffman T; Pascual-Leone A
    Neuroreport; 2007 Oct; 18(16):1703-7. PubMed ID: 17921872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception.
    Dugué L; Marque P; VanRullen R
    J Neurosci; 2011 Aug; 31(33):11889-93. PubMed ID: 21849549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation.
    Gerwig M; Kastrup O; Meyer BU; Niehaus L
    J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS).
    Sparing R; Dambeck N; Stock K; Meister IG; Huetter D; Boroojerdi B
    Neurosci Lett; 2005 Jul; 382(3):312-6. PubMed ID: 15925110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of pitch and bandwidth to sound-induced enhancement of visual cortex excitability in humans.
    Spierer L; Manuel AL; Bueti D; Murray MM
    Cortex; 2013; 49(10):2728-34. PubMed ID: 23419789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation.
    Guzman-Lopez J; Silvanto J; Seemungal BM
    Clin Neurophysiol; 2011 Oct; 122(10):1951-5. PubMed ID: 21511523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of TMS phosphene threshold estimation: Toward a standardized protocol.
    Mazzi C; Savazzi S; Abrahamyan A; Ruzzoli M
    Brain Stimul; 2017; 10(3):609-617. PubMed ID: 28209346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability.
    Romei V; Rihs T; Brodbeck V; Thut G
    Neuroreport; 2008 Jan; 19(2):203-8. PubMed ID: 18185109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression.
    Kammer T; Puls K; Strasburger H; Hill NJ; Wichmann FA
    Exp Brain Res; 2005 Jan; 160(1):118-28. PubMed ID: 15368086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mental number line modulates visual cortical excitability.
    Cattaneo Z; Silvanto J; Battelli L; Pascual-Leone A
    Neurosci Lett; 2009 Oct; 462(3):253-6. PubMed ID: 19616067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas.
    Romei V; Brodbeck V; Michel C; Amedi A; Pascual-Leone A; Thut G
    Cereb Cortex; 2008 Sep; 18(9):2010-8. PubMed ID: 18093905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.