These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28522389)

  • 1. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus.
    Dong X; Jin Y; Ming D; Li B; Dong H; Wang L; Wang T; Wang D
    J Microbiol Methods; 2017 Aug; 139():79-86. PubMed ID: 28522389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a Gene Knockdown System Based on Catalytically Inactive ("Dead") Cas9 (dCas9) in Staphylococcus aureus.
    Zhao C; Shu X; Sun B
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an inducer-free, virulence gene promoter-controlled, and fluorescent reporter-labeled CRISPR interference system in
    Miah R; Johannessen M; Kjos M; Lentz CS
    Microbiol Spectr; 2024 Oct; 12(10):e0060224. PubMed ID: 39162514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference.
    Sato'o Y; Hisatsune J; Yu L; Sakuma T; Yamamoto T; Sugai M
    PLoS One; 2018; 13(1):e0185987. PubMed ID: 29377933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa.
    Xiang L; Qi F; Jiang L; Tan J; Deng C; Wei Z; Jin S; Huang G
    Lett Appl Microbiol; 2020 Oct; 71(4):386-393. PubMed ID: 32506497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus.
    Yang S; Liu J; Shao F; Wang P; Duan G; Yang H
    Biochem Biophys Res Commun; 2015 Aug; 464(3):894-900. PubMed ID: 26188514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.
    Cao L; Gao CH; Zhu J; Zhao L; Wu Q; Li M; Sun B
    Int J Med Microbiol; 2016 Dec; 306(8):686-696. PubMed ID: 27600408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System.
    Chen W; Zhang Y; Yeo WS; Bae T; Ji Q
    J Am Chem Soc; 2017 Mar; 139(10):3790-3795. PubMed ID: 28218837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.
    Dreissig S; Schiml S; Schindele P; Weiss O; Rutten T; Schubert V; Gladilin E; Mette MF; Puchta H; Houben A
    Plant J; 2017 Aug; 91(4):565-573. PubMed ID: 28509419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex.
    Guk K; Keem JO; Hwang SG; Kim H; Kang T; Lim EK; Jung J
    Biosens Bioelectron; 2017 Sep; 95():67-71. PubMed ID: 28412663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA.
    Miura H; Gurumurthy CB; Sato T; Sato M; Ohtsuka M
    Sci Rep; 2015 Aug; 5():12799. PubMed ID: 26242611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonspecific toxicities of Streptococcus pyogenes and Staphylococcus aureus dCas9 in Chlamydia trachomatis.
    Wurihan W; Huang Y; Weber AM; Wu X; Fan H
    Pathog Dis; 2019 Dec; 77(9):. PubMed ID: 32011704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of CRISPR-Cas systems in neuroscience.
    Heidenreich M; Zhang F
    Nat Rev Neurosci; 2016 Jan; 17(1):36-44. PubMed ID: 26656253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR Interference for Rapid Knockdown of Essential Cell Cycle Genes in
    Myrbråten IS; Wiull K; Salehian Z; Håvarstein LS; Straume D; Mathiesen G; Kjos M
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.