These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28522395)

  • 1. Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal.
    Zhang D; Zhu J; Ye F; Zhao G
    Int J Biol Macromol; 2017 Oct; 103():307-315. PubMed ID: 28522395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure relationship of non-covalent interactions between phenolic acids and arabinan-rich pectic polysaccharides from rapeseed meal.
    Zhu J; Zhang D; Tang H; Zhao G
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2597-2603. PubMed ID: 30201566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium studies of copper ion adsorption onto palm kernel fibre.
    Ofomaja AE
    J Environ Manage; 2010 Jul; 91(7):1491-9. PubMed ID: 20346574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp.
    Oosterveld A; Beldman G; Schols HA; Voragen AG
    Carbohydr Res; 2000 Sep; 328(2):185-97. PubMed ID: 11028786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).
    Wefers D; Gmeiner BM; Tyl CE; Bunzel M
    Phytochemistry; 2015 Aug; 116():320-328. PubMed ID: 25983037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran.
    Nouri L; Ghodbane I; Hamdaoui O; Chiha M
    J Hazard Mater; 2007 Oct; 149(1):115-25. PubMed ID: 17459582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal.
    Pustjens AM; Schols HA; Kabel MA; Gruppen H
    Carbohydr Polym; 2013 Nov; 98(2):1650-6. PubMed ID: 24053853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium studies of sorption of lead(II) ions by different pectin compounds.
    Khotimchenko M; Kovalev V; Khotimchenko Y
    J Hazard Mater; 2007 Nov; 149(3):693-9. PubMed ID: 17513039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet.
    Zaidel DN; Arnous A; Holck J; Meyer AS
    J Agric Food Chem; 2011 Nov; 59(21):11598-607. PubMed ID: 21954887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of chlorophenols from groundwater by chitosan sorption.
    Zheng S; Yang Z; Jo DH; Park YH
    Water Res; 2004 May; 38(9):2314-21. PubMed ID: 15142792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.
    Singh A; Srivastava A; Srivastava PC
    Pest Manag Sci; 2016 Aug; 72(8):1491-9. PubMed ID: 26462999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste.
    Hameed BH; Mahmoud DK; Ahmad AL
    J Hazard Mater; 2008 Oct; 158(2-3):499-506. PubMed ID: 18353547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall.
    Ralet MC; André-Leroux G; Quéméner B; Thibault JF
    Phytochemistry; 2005 Dec; 66(24):2800-14. PubMed ID: 16297942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.
    Metzelder F; Schmidt TC
    Environ Sci Technol; 2017 May; 51(9):4928-4935. PubMed ID: 28383258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals.
    Tharayil N; Bhowmik PC; Xing B
    J Agric Food Chem; 2006 Apr; 54(8):3033-40. PubMed ID: 16608227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.