BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2852322)

  • 1. Phorbol ester and dibutyryl cyclic AMP reduce content and efflux of taurine in primary cerebellar astrocytes in culture.
    Philibert RA; Dutton GR
    Neurosci Lett; 1988 Dec; 95(1-3):323-8. PubMed ID: 2852322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of protein kinase C and cyclic AMP in the ammonia-induced shift of the taurine uptake/efflux balance towards efflux in C6 cells.
    Zielińska M; Zabłocka B; Dybel A; Albrecht J
    Neurochem Res; 2005 Mar; 30(3):349-54. PubMed ID: 16018578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+-evoked taurine efflux from cerebellar astrocytes: on the roles of Ca2+ and Na+.
    Philibert RA; Rogers KL; Dutton GR
    Neurochem Res; 1989 Jan; 14(1):43-8. PubMed ID: 2469025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent, K+-stimulated efflux of endogenous taurine from primary astrocyte cultures is Ca2+-dependent.
    Philibert RA; Rogers KL; Allen AJ; Dutton GR
    J Neurochem; 1988 Jul; 51(1):122-6. PubMed ID: 2898000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of taurine from cultured cerebellar granule cells and astrocytes: co-release with glutamate.
    Holopainen I; Kontro P; Oja SS
    Neuroscience; 1989; 29(2):425-32. PubMed ID: 2566956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocyte heterogeneity: endogenous amino acid levels and release evoked by non-N-methyl-D-aspartate receptor agonists and by potassium-induced swelling in type-1 and type-2 astrocytes.
    Levi G; Patrizio M
    J Neurochem; 1992 May; 58(5):1943-52. PubMed ID: 1348526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taurine efflux and intracellular pH during astrocyte volume regulation.
    Olson JE; Putnam RW; Evers JA; Munoz N
    Adv Exp Med Biol; 1998; 442():229-35. PubMed ID: 9635036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent high-affinity uptake of taurine in cultured cerebellar granule cells and astrocytes.
    Holopainen I; Malminen O; Kontro P
    J Neurosci Res; 1987; 18(3):479-83. PubMed ID: 3437468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A(2b) receptor mediates adenosine inhibition of taurine efflux from pituicytes.
    Pierson PM; Peteri-Brunbäck B; Pisani DF; Abbracchio MP; Mienville JM; Rosso L
    Biol Cell; 2007 Aug; 99(8):445-54. PubMed ID: 17391106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K(+)- and temperature-evoked taurine efflux from hypothalamic astrocytes.
    Tigges GA; Philibert RA; Dutton GR
    Neurosci Lett; 1990 Oct; 119(1):23-6. PubMed ID: 2097579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-coupled taurine efflux from cerebellar neuronal cultures: on the roles of Ca++ and Na+.
    Philibert RA; Rogers KL; Dutton GR
    J Neurosci Res; 1989 Feb; 22(2):167-71. PubMed ID: 2468785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dibutyryl cyclic AMP-induced changes in neuron-astroglia interactions and fibronectin immunocytochemistry in dissociated rat cerebellar cultures.
    Gilad GM; Shanker G; Dahl D; Gilad VH
    Brain Res; 1990 Feb; 508(2):215-24. PubMed ID: 2155038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term treatment with ammonia affects the content and release of taurine in cultured cerebellar astrocytes and granule neurons.
    Wysmyk U; Oja SS; Saransaari P; Albrecht J
    Neurochem Int; 1994 Apr; 24(4):317-22. PubMed ID: 8061596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes.
    Morán J; Morales-Mulia M; Pasantes-Morales H
    Biochim Biophys Acta; 2001 Apr; 1538(2-3):313-20. PubMed ID: 11336802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfhydryl groups essential for the volume-sensitive release of taurine from astrocytes.
    Martínez A; Muñoz-Clares RA; Guerra G; Morán J; Pasantes-Morales H
    Neurosci Lett; 1994 Aug; 176(2):239-42. PubMed ID: 7830955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of bradykinin-induced phosphoinositide turnover in cultured cerebellar astrocytes: possible role of protein kinase C.
    Lin WW; Chuang DM
    Neurochem Int; 1992 Dec; 21(4):573-9. PubMed ID: 1338944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of beta-adrenergic receptors stimulates release of an inhibitory transmitter from astrocytes.
    Shain W; Madelian V; Martin DL; Kimelberg HK; Perrone M; Lepore R
    J Neurochem; 1986 Apr; 46(4):1298-303. PubMed ID: 3005511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herpes simplex virus type 1 infection of rat astrocytes in primary culture: effects of dibutyryl cyclic AMP.
    McCarthy M; Norenberg MD; Norenberg LO; Dix RD
    J Neuropathol Exp Neurol; 1990 Jan; 49(1):3-20. PubMed ID: 2153759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-glutamate-stimulated taurine release from rat cerebral cultured astrocytes.
    Koyama Y; Ishibashi T; Tanaka K; Baba A
    J Neurosci Res; 1994 May; 38(1):75-80. PubMed ID: 8057393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dibutyryl cyclic AMP-induced morphological differentiation of rat brain astrocytes increases alpha 1-adrenoceptor induced phosphoinositide breakdown by a mechanism involving protein synthesis.
    Fahrig T; Sommermeyer H
    Brain Res; 1993 Feb; 602(2):318-24. PubMed ID: 8383574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.