These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 28523276)
1. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees. Geng Y; Samuel OW; Wei Y; Li G Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276 [TBL] [Abstract][Full Text] [Related]
2. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. Geng Y; Zhou P; Li G J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049 [TBL] [Abstract][Full Text] [Related]
3. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study. Kryger M; Schultz AE; Kuiken T Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053 [TBL] [Abstract][Full Text] [Related]
4. Reduction of the effect of arm position variation on real-time performance of motion classification. Geng Y; Zhang F; Yang L; Zhang Y; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2772-5. PubMed ID: 23366500 [TBL] [Abstract][Full Text] [Related]
5. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses. Li G; Li Y; Yu L; Geng Y Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972 [TBL] [Abstract][Full Text] [Related]
6. Resolving the effect of wrist position on myoelectric pattern recognition control. Adewuyi AA; Hargrove LJ; Kuiken TA J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991 [TBL] [Abstract][Full Text] [Related]
7. Interface Prostheses With Classifier-Feedback-Based User Training. Fang Y; Zhou D; Li K; Liu H IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744 [TBL] [Abstract][Full Text] [Related]
8. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. Young AJ; Smith LH; Rouse EJ; Hargrove LJ J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948 [TBL] [Abstract][Full Text] [Related]
9. Towards reducing the impacts of unwanted movements on identification of motion intentions. Li X; Chen S; Zhang H; Samuel OW; Wang H; Fang P; Zhang X; Li G J Electromyogr Kinesiol; 2016 Jun; 28():90-8. PubMed ID: 27093136 [TBL] [Abstract][Full Text] [Related]
10. Motion recognition for simultaneous control of multifunctional transradial prostheses. Jiang N; Tian L; Fang P; Dai Y; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009 [TBL] [Abstract][Full Text] [Related]
11. Selection of sampling rate for EMG pattern recognition based prosthesis control. Li G; Li Y; Zhang Z; Geng Y; Zhou R Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5058-61. PubMed ID: 21096026 [TBL] [Abstract][Full Text] [Related]
12. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794 [TBL] [Abstract][Full Text] [Related]
13. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473 [TBL] [Abstract][Full Text] [Related]
14. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines. Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511 [TBL] [Abstract][Full Text] [Related]
15. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees. Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443 [TBL] [Abstract][Full Text] [Related]
16. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Khushaba RN; Takruri M; Miro JV; Kodagoda S Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
18. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795 [TBL] [Abstract][Full Text] [Related]
19. EMG pattern recognition control of multifunctional prostheses by transradial amputees. Li G; Kuiken TA Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455 [TBL] [Abstract][Full Text] [Related]
20. Selective classification for improved robustness of myoelectric control under nonideal conditions. Scheme EJ; Englehart KB; Hudgins BS IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]