These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28523646)

  • 1. Phylogenetics and ecomorphology of emarginate primary feathers.
    Klaassen van Oorschot B; Tang HK; Tobalske BW
    J Morphol; 2017 Jul; 278(7):936-947. PubMed ID: 28523646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of avian wing shape and previously unrecognized trends in covert feathering.
    Wang X; Clarke JA
    Proc Biol Sci; 2015 Oct; 282(1816):20151935. PubMed ID: 26446812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
    Feo TJ; Field DJ; Prum RO
    Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lifting line model to investigate the influence of tip feathers on wing performance.
    Fluck M; Crawford C
    Bioinspir Biomim; 2014 Nov; 9(4):046017. PubMed ID: 25418986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds.
    Wang X; Nudds RL; Palmer C; Dyke GJ
    J Evol Biol; 2012 Mar; 25(3):547-55. PubMed ID: 22260434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.
    Clark CJ; Prum RO
    J Exp Biol; 2015 Nov; 218(Pt 21):3520-7. PubMed ID: 26385327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling of bird wings and feathers for efficient flight.
    Sullivan TN; Meyers MA; Arzt E
    Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body mass and geographic distribution determined the evolution of the wing flight-feather molt strategy in the Neornithes lineage.
    Kiat Y; Slavenko A; Sapir N
    Sci Rep; 2021 Nov; 11(1):21573. PubMed ID: 34732791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive aeroelastic deflection of avian primary feathers.
    Klaassen van Oorschot B; Choroszucha R; Tobalske BW
    Bioinspir Biomim; 2020 Jul; 15(5):056008. PubMed ID: 32470956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.
    Chatterjee S; Templin RJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.
    Felice RN; O'Connor PM
    PLoS One; 2014; 9(2):e89737. PubMed ID: 24586998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional constraints on the number and shape of flight feathers.
    Kiat Y; O'Connor JK
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2306639121. PubMed ID: 38346196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down feather morphology reflects adaptation to habitat and thermal conditions across the avian phylogeny.
    Pap PL; Osváth G; Daubner T; Nord A; Vincze O
    Evolution; 2020 Oct; 74(10):2365-2376. PubMed ID: 32748406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.