These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28523910)

  • 1. Dense Layer of Bacteriophages Ordered in Alternating Electric Field and Immobilized by Surface Chemical Modification as Sensing Element for Bacteria Detection.
    Richter Ł; Bielec K; Leśniewski A; Łoś M; Paczesny J; Hołyst R
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19622-19629. PubMed ID: 28523910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Detection of
    Halkare P; Punjabi N; Wangchuk J; Madugula S; Kondabagil K; Mukherji S
    ACS Sens; 2021 Jul; 6(7):2720-2727. PubMed ID: 34253020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.
    Wang C; Sauvageau D; Elias A
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1128-38. PubMed ID: 26741170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications.
    Hussain W; Ullah MW; Farooq U; Aziz A; Wang S
    Biosens Bioelectron; 2021 Apr; 177():112973. PubMed ID: 33429203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring.
    Olsson AL; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13698-706. PubMed ID: 27171886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.
    Alcaine SD; Law K; Ho S; Kinchla AJ; Sela DA; Nugen SR
    Biosens Bioelectron; 2016 Aug; 82():14-9. PubMed ID: 27031186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae).
    Bhardwaj N; Bhardwaj SK; Mehta J; Mohanta GC; Deep A
    Anal Biochem; 2016 Jul; 505():18-25. PubMed ID: 27114042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria.
    Shabani A; Zourob M; Allain B; Marquette CA; Lawrence MF; Mandeville R
    Anal Chem; 2008 Dec; 80(24):9475-82. PubMed ID: 19072262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage reporter technology for sensing and detecting microbial targets.
    Smartt AE; Ripp S
    Anal Bioanal Chem; 2011 May; 400(4):991-1007. PubMed ID: 21165607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry.
    Xu J; Zhao C; Chau Y; Lee YK
    Biosens Bioelectron; 2020 Mar; 151():111914. PubMed ID: 31999572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oriented immobilization of bacteriophages for biosensor applications.
    Tolba M; Minikh O; Brovko LY; Evoy S; Griffiths MW
    Appl Environ Microbiol; 2010 Jan; 76(2):528-35. PubMed ID: 19948867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium.
    Lakshmanan RS; Guntupalli R; Hu J; Kim DJ; Petrenko VA; Barbaree JM; Chin BA
    J Microbiol Methods; 2007 Oct; 71(1):55-60. PubMed ID: 17765344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria.
    Naidoo R; Singh A; Arya SK; Beadle B; Glass N; Tanha J; Szymanski CM; Evoy S
    Bacteriophage; 2012 Jan; 2(1):15-24. PubMed ID: 22666653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.
    Wang Z; Wang D; Chen J; Sela DA; Nugen SR
    Analyst; 2016 Feb; 141(3):1009-16. PubMed ID: 26689710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in bacteriophage-based methods for bacteria detection.
    Richter Ł; Janczuk-Richter M; Niedziółka-Jönsson J; Paczesny J; Hołyst R
    Drug Discov Today; 2018 Feb; 23(2):448-455. PubMed ID: 29158194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage-based label-free biomolecule detection in an opto-fluidic ring resonator.
    Zhu H; White IM; Suter JD; Fan X
    Biosens Bioelectron; 2008 Nov; 24(3):461-6. PubMed ID: 18550355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale bacteriophage biosensors beyond phage display.
    Lee JW; Song J; Hwang MP; Lee KH
    Int J Nanomedicine; 2013; 8():3917-25. PubMed ID: 24143096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors.
    Farooq U; Yang Q; Ullah MW; Wang S
    Biosens Bioelectron; 2018 Oct; 118():204-216. PubMed ID: 30081260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance biosensing using phages for bacteria detection: generation of dual signals as the clue for in-chip assay confirmation.
    Mejri MB; Baccar H; Baldrich E; Del Campo FJ; Helali S; Ktari T; Simonian A; Aouni M; Abdelghani A
    Biosens Bioelectron; 2010 Dec; 26(4):1261-7. PubMed ID: 20673624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings.
    Smietana M; Bock WJ; Mikulic P; Ng A; Chinnappan R; Zourob M
    Opt Express; 2011 Apr; 19(9):7971-8. PubMed ID: 21643046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.