These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28523911)

  • 1. Cup-Shaped Nanoantenna Arrays for Zeptoliter Volume Biochemistry and Plasmonic Sensing in the Visible Wavelength Range.
    Drevinskas R; Rakickas T; Selskis A; Rosa L; Valiokas RN
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19082-19091. PubMed ID: 28523911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.
    Zhang D; Lu Y; Jiang J; Zhang Q; Yao Y; Wang P; Chen B; Cheng Q; Liu GL; Liu Q
    Biosens Bioelectron; 2015 May; 67():237-42. PubMed ID: 25172029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.
    Gisbert Quilis N; Lequeux M; Venugopalan P; Khan I; Knoll W; Boujday S; Lamy de la Chapelle M; Dostalek J
    Nanoscale; 2018 May; 10(21):10268-10276. PubMed ID: 29790495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching.
    Chen K; Duy Dao T; Nagao T
    Sci Rep; 2017 Mar; 7():44069. PubMed ID: 28272442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays.
    Seo S; Zhou X; Liu GL
    Small; 2016 Jul; 12(25):3453-62. PubMed ID: 27206214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Localized Surface Plasmon Properties of Triangular Gold Nanowell Arrays in a Glass Substrate.
    Jung B; Frey W
    J Nanosci Nanotechnol; 2015 Jan; 15(1):688-92. PubMed ID: 26328428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indium⁻Tin⁻Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study.
    Li Z; Zhang Z; Chen K
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30979000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication.
    Zhao F; Arnob MMP; Zenasni O; Li J; Shih WC
    Nanoscale Horiz; 2017 Sep; 2(5):267-276. PubMed ID: 32260682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays.
    Wang B; Zou Y; Lu H; Kong W; Singh SC; Zhao C; Yao C; Xing J; Zheng X; Yu Z; Tong C; Xin W; Yu W; Zhao B; Guo C
    Small; 2020 Jun; 16(24):e2001417. PubMed ID: 32407005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the emission from electric and magnetic dipoles by gold nanocup antennas.
    Mi H; Wang L; Zhang Y; Zhao G; Jiang R
    Opt Express; 2019 May; 27(10):14221-14230. PubMed ID: 31163874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap.
    Uchida S; Zettsu N; Endo K; Yamamura K
    Nanoscale Res Lett; 2013 Jun; 8(1):274. PubMed ID: 23758903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging.
    Gao A; Xu W; Ponce de León Y; Bai Y; Gong M; Xie K; Park BH; Yin Y
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28466959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization controlled coupling and shaping of surface plasmon polaritons by nanoantenna arrays.
    Avayu O; Epstein I; Eizner E; Ellenbogen T
    Opt Lett; 2015 Apr; 40(7):1520-3. PubMed ID: 25831374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.