These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28524881)

  • 1. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity.
    Zhang Y; Meng QS; Zhang L; Luo Y; Yu YJ; Yang B; Zhang Y; Esteban R; Aizpurua J; Luo Y; Yang JL; Dong ZC; Hou JG
    Nat Commun; 2017 May; 8():15225. PubMed ID: 28524881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Plexcitonic Coupling in a WS
    Han X; Wang K; Jiang Y; Xing X; Li S; Hu H; Liu W; Wang B; Lu P
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43554-43561. PubMed ID: 34465088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study.
    Kuisma M; Rousseaux B; Czajkowski KM; Rossi TP; Shegai T; Erhart P; Antosiewicz TJ
    ACS Photonics; 2022 Mar; 9(3):1065-1077. PubMed ID: 35308405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter.
    Park KD; May MA; Leng H; Wang J; Kropp JA; Gougousi T; Pelton M; Raschke MB
    Sci Adv; 2019 Jul; 5(7):eaav5931. PubMed ID: 31309142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single quantum dot controls a plasmonic cavity's scattering and anisotropy.
    Hartsfield T; Chang WS; Yang SC; Ma T; Shi J; Sun L; Shvets G; Link S; Li X
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12288-92. PubMed ID: 26372957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization.
    Thakkar N; Rea MT; Smith KC; Heylman KD; Quillin SC; Knapper KA; Horak EH; Masiello DJ; Goldsmith RH
    Nano Lett; 2017 Nov; 17(11):6927-6934. PubMed ID: 28968499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM.
    Martín-Jiménez A; Fernández-Domínguez AI; Lauwaet K; Granados D; Miranda R; García-Vidal FJ; Otero R
    Nat Commun; 2020 Feb; 11(1):1021. PubMed ID: 32094339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores.
    Chan WP; Chen JH; Chou WL; Chen WY; Liu HY; Hu HC; Jeng CC; Li JR; Chen C; Chen SY
    ACS Nano; 2021 Aug; 15(8):13085-13093. PubMed ID: 34313105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate engineering of plasmonic nanocavity antenna modes.
    Xiong X; Clarke D; Lai Y; Bai P; Png CE; Wu L; Hess O
    Opt Express; 2023 Jan; 31(2):2345-2358. PubMed ID: 36785250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective strong coupling in a plasmonic nanocavity.
    Varguet H; Díaz-Valles AA; Guérin S; Jauslin HR; Colas des Francs G
    J Chem Phys; 2021 Feb; 154(8):084303. PubMed ID: 33639753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial coherence from Nd
    Fernández-Martínez J; Carretero-Palacios S; Sánchez-García L; Bravo-Abad J; Molina P; van Hoof N; Ramírez MO; Rivas JG; Bausá LE
    Opt Express; 2021 Aug; 29(16):26244-26254. PubMed ID: 34614934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
    Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I
    Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter.
    Martín-Jiménez A; Jover Ó; Lauwaet K; Granados D; Miranda R; Otero R
    Nano Lett; 2022 Dec; 22(23):9283-9289. PubMed ID: 36441511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.
    Santhosh K; Bitton O; Chuntonov L; Haran G
    Nat Commun; 2016 Jun; 7():ncomms11823. PubMed ID: 27293116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomographic imaging of the photonic environment of plasmonic nanoparticles.
    Hörl A; Haberfehlner G; Trügler A; Schmidt FP; Hohenester U; Kothleitner G
    Nat Commun; 2017 Jun; 8(1):37. PubMed ID: 28652567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons.
    Bitton O; Gupta SN; Houben L; Kvapil M; Křápek V; Šikola T; Haran G
    Nat Commun; 2020 Jan; 11(1):487. PubMed ID: 31980624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.