These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28525)

  • 1. Physicochemical characterization of six monoclonal cryoimmunoglobulins: possible basis for cold-dependent insolubility.
    Middaugh CR; Gerber-Jenson B; Hurvitz A; Paluszek A; Scheffel C; Litman GW
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3440-4. PubMed ID: 28525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. VI. Quenching by acrylamide of the intrinsic tryptophan fluorescence of cryoglobulin and non-cryoglobulin IgM proteins.
    Middaugh CR; Litman GW
    Biochim Biophys Acta; 1978 Jul; 535(1):33-43. PubMed ID: 667117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of solutes on the cold-induced insolubility of monoclonal cryoimmunoglobulins.
    Middaugh CR; Litman GW
    J Biol Chem; 1977 Nov; 252(22):8002-6. PubMed ID: 914859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic properties of cryoimmunoglobulins.
    Lawson EQ; Brandau DT; Trautman PA; Middaugh CR
    J Immunol; 1988 Feb; 140(4):1218-22. PubMed ID: 3343512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for the temperature-dependent insolubility of cryoglobulins. XII. Anomalous mobility of monoclonal cryoimmunoglobulin heavy chains accompanying polyacrylamide gel electrophoresis in sodium dodecyl sulfate.
    Litman GW; Scheffel C; Gerber-Jenson B; Litman R; Middaugh CR
    Immunol Commun; 1981; 10(8):707-18. PubMed ID: 6804373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for the temperature-dependent insolubility of cryoglobulins--IV. Structural studies of the IgM monoclonal cryoglobulin McE.
    Middaugh CR; Kehoe JM; Prystowsky MB; Gerber-Jenson B; Jenson JC; Litman GW
    Immunochemistry; 1978 Mar; 15(3):171-87. PubMed ID: 25240
    [No Abstract]   [Full Text] [Related]  

  • 7. Kinetics of the precipitation of cryoimmunoglobulins.
    Lawson EQ; Brandau DT; Trautman PA; Aziz SE; Middaugh CR
    Mol Immunol; 1987 Sep; 24(9):897-905. PubMed ID: 3657810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of interchain disulfide bond cleavage on the cold induced precipitation of cryoimmunoglobulins.
    Brandau DT; Lawson EQ; Middaugh CR; Litman GW
    Immunol Invest; 1986 Aug; 15(5):447-62. PubMed ID: 3781575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human monoclonal cryoimmunoglobulins. I. Molecular properties of IgG3 kappa (Jir protein) and the cryo-coprecipitability of its molecular fragments by papain.
    Nishimura Y; Nakamura H
    J Biochem; 1984 Jan; 95(1):255-65. PubMed ID: 6423624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of cryoimmunoglobulins with a model surface.
    Brandau DT; Lawson EQ; Schubert CF; Day NK; Matsuno K; Middaugh CR
    Mol Immunol; 1991 Sep; 28(9):1019-26. PubMed ID: 1656245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for the temperature-dependent insolubility of cryoglobulins--IX. Physicochemical characterization of an IgG1, kappa monoclonal cryoimmunoglobulin exhibiting marginal low temperature-dependent insolubility.
    Litman GW; Gerber-Jenson B; Litman R; Middaugh CR; Scheffel C
    Mol Immunol; 1980 Mar; 17(3):337-44. PubMed ID: 6777663
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular basis for the temperature-dependent insolubility of cryoglobulins--XI. Sequence comparison of the heavy-chain variable regions of the human cryoimmunoglobulins McE and Hil by metric analysis.
    Erickson BW; Gerber-Jenson B; Wang AC; Litman GW
    Mol Immunol; 1982 Mar; 19(3):357-65. PubMed ID: 6808354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoimmunoglobulins.
    Grey HM; Kohler PF
    Semin Hematol; 1973 Apr; 10(2):87-112. PubMed ID: 4633223
    [No Abstract]   [Full Text] [Related]  

  • 14. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. II. Spectroscopic studies of the IgM monoclonal cryoglobulin McE.
    Middaugh CR; Thomas GJ; Prescott B; Aberlin ME; Litman GW
    Biochemistry; 1977 Jun; 16(13):2986-94. PubMed ID: 880291
    [No Abstract]   [Full Text] [Related]  

  • 15. Cryoprecipitogogue from normal serum: mechanism for cryoprecipitation of immune complexes.
    Hardin JA
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4562-5. PubMed ID: 6945599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some properties of a cryoglobulin isolated from human serum.
    Bobrzecka K; Konieczny L; Zak Z
    Clin Chim Acta; 1967 Nov; 18(2):117-26. PubMed ID: 4965556
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermodynamic basis for the abnormal solubility of monoclonal cryoimmunoglobulins.
    Middaugh CR; Lawson EQ; Litman GW; Tisel WA; Mood DA; Rosenberg A
    J Biol Chem; 1980 Jul; 255(14):6532-4. PubMed ID: 7190147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of intermolecular electrostatic cooperative interactions causing cryoprecipitation of human monoclonal immunoglobin M].
    Kosarev IV; Surovtsev VI; Zav'ialov VP
    Bioorg Khim; 1985 Jun; 11(6):745-52. PubMed ID: 3929795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of a conformational anomaly to the Fabmu region of a monoclonal IgM cryoglobulin.
    Middaugh CR; Oshman RG; Litman GW
    Clin Exp Immunol; 1978 Jan; 31(1):126-30. PubMed ID: 416930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of cold insolubility of an IgA cryoglobulin by decanedicarboxylic acid and related compounds.
    Lalezari P; Kumar M; Kumar KM; Lawrence C
    Am J Hematol; 1983 Nov; 15(3):279-88. PubMed ID: 6638013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.