These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28525275)

  • 1. Rh-Catalyzed Anti-Markovnikov Hydrocyanation of Terminal Alkynes.
    Ye F; Chen J; Ritter T
    J Am Chem Soc; 2017 May; 139(21):7184-7187. PubMed ID: 28525275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-Catalyzed Markovnikov Transfer Hydrocyanation in the Absence of Lewis Acid.
    Frye NL; Bhunia A; Studer A
    Org Lett; 2020 Jun; 22(11):4456-4460. PubMed ID: 32388999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile.
    Bhunia A; Bergander K; Studer A
    J Am Chem Soc; 2018 Nov; 140(47):16353-16359. PubMed ID: 30392374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Hydrocyanation of Activated Terminal Alkynes.
    Tejedor D; Delgado-Hernández S; Colella L; García-Tellado F
    Chemistry; 2019 Nov; 25(66):15046-15049. PubMed ID: 31553088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-Catalyzed Highly Regioselective Hydrocyanation of Terminal Alkynes with Zn(CN)
    Zhang X; Xie X; Liu Y
    J Am Chem Soc; 2018 Jun; 140(24):7385-7389. PubMed ID: 29851478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodium-Catalyzed Anti-Markovnikov Transfer Hydroiodination of Terminal Alkynes.
    Boehm P; Kehl N; Morandi B
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202214071. PubMed ID: 36336665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Study of Unprecedented Highly Regioselective Hydrocyanation of Terminal Alkynes: Insight into the Origins of the Regioselectivity and Ligand Effects.
    Jiang D; Fu M; Zhang Y; Li Q; Guo K; Yang Y; Zhao L
    J Comput Chem; 2020 Feb; 41(4):279-289. PubMed ID: 31713268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Divergent Cyanation of Alkynes Enabled by Phosphorus Radicals.
    Zhang Y; Han Y; Zhu S; Qing FL; Xue XS; Chu L
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202210838. PubMed ID: 36264274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetone cyanohydrin as a source of HCN in the Cu-catalyzed hydrocyanation of alpha-aryl diazoacetates.
    Park EJ; Lee S; Chang S
    J Org Chem; 2010 Apr; 75(8):2760-2. PubMed ID: 20337415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Tertiary Benzylic Nitriles via Nickel-Catalyzed Markovnikov Hydrocyanation of α-Substituted Styrenes.
    Xing Y; Yu R; Fang X
    Org Lett; 2020 Feb; 22(3):1008-1012. PubMed ID: 31935096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer Hydrocyanation of α- and α,β-Substituted Styrenes Catalyzed by Boron Lewis Acids.
    Orecchia P; Yuan W; Oestreich M
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3579-3583. PubMed ID: 30624005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation.
    Fang X; Yu P; Morandi B
    Science; 2016 Feb; 351(6275):832-6. PubMed ID: 26912891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct cyanation, hydrocyanation, dicyanation and cyanofunctionalization of alkynes.
    Peng L; Hu Z; Wang H; Wu L; Jiao Y; Tang Z; Xu X
    RSC Adv; 2020 Mar; 10(17):10232-10244. PubMed ID: 35498608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodium-catalyzed selective anti-Markovnikov addition of carboxylic acids to alkynes.
    Lumbroso A; Vautravers NR; Breit B
    Org Lett; 2010 Dec; 12(23):5498-501. PubMed ID: 21049947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective Hydrocyanation of Alkenyl Sulfoxides as a Method to Highly Enantiomerically Enriched Compounds with Tertiary and Quaternary Chiral Carbon Atoms.
    García Ruano JL; Cifuentes García M; Laso NM; Martín Castro AM; Rodríguez Ramos JH
    Angew Chem Int Ed Engl; 2001 Jul; 40(13):2507-2509. PubMed ID: 29712294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in transition-metal-catalyzed hydrocyanation of nonpolar alkenes and alkynes.
    Zhang H; Su X; Dong K
    Org Biomol Chem; 2020 Jan; 18(3):391-399. PubMed ID: 31844867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-catalyzed stereo- and regioselective hydrophosphorylation of terminal alkynes: scope and mechanistic study.
    Li J; Gao Z; Guo Y; Liu H; Zhao P; Bi X; Shi E; Xiao J
    RSC Adv; 2022 Jun; 12(29):18889-18896. PubMed ID: 35873310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-controlled reactivity, selectivity, and mechanism of cationic ruthenium-catalyzed hydrosilylations of alkynes, ketones, and nitriles: a theoretical study.
    Yang YF; Chung LW; Zhang X; Houk KN; Wu YD
    J Org Chem; 2014 Sep; 79(18):8856-64. PubMed ID: 25157438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic anti-Markovnikov hydrobromination of alkynes.
    Uehling MR; Rucker RP; Lalic G
    J Am Chem Soc; 2014 Jun; 136(24):8799-803. PubMed ID: 24896663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt-catalyzed branched selective hydroallylation of terminal alkynes.
    Chen J; Ying J; Lu Z
    Nat Commun; 2022 Aug; 13(1):4518. PubMed ID: 35922446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.