These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28525278)

  • 21. Oxygen surface functionalization of graphene nanoribbons for transport gap engineering.
    Cresti A; Lopez-Bezanilla A; Ordejón P; Roche S
    ACS Nano; 2011 Nov; 5(11):9271-7. PubMed ID: 21985521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices.
    Chen Z; Narita A; Müllen K
    Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons.
    Gao J; Uribe-Romo FJ; Saathoff JD; Arslan H; Crick CR; Hein SJ; Itin B; Clancy P; Dichtel WR; Loo YL
    ACS Nano; 2016 Apr; 10(4):4847-56. PubMed ID: 27046054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene nanoribbon devices at high bias.
    Han MY; Kim P
    Nano Converg; 2014; 1(1):1. PubMed ID: 28191387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-Surface Synthesis of Edge-Extended Zigzag Graphene Nanoribbons.
    Kinikar A; Xu X; Giovannantonio MD; Gröning O; Eimre K; Pignedoli CA; Müllen K; Narita A; Ruffieux P; Fasel R
    Adv Mater; 2023 Nov; 35(48):e2306311. PubMed ID: 37795919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mobility on graphene nanoribbons.
    Jafary-Zadeh M; Reddy CD; Zhang YW
    Phys Chem Chem Phys; 2014 Feb; 16(5):2129-35. PubMed ID: 24346419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Termini of bottom-up fabricated graphene nanoribbons.
    Talirz L; Söde H; Cai J; Ruffieux P; Blankenburg S; Jafaar R; Berger R; Feng X; Müllen K; Passerone D; Fasel R; Pignedoli CA
    J Am Chem Soc; 2013 Feb; 135(6):2060-3. PubMed ID: 23350872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phonon-Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites.
    Karakus M; Jensen SA; D'Angelo F; Turchinovich D; Bonn M; Cánovas E
    J Phys Chem Lett; 2015 Dec; 6(24):4991-6. PubMed ID: 26619006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic Structure of Isolated Graphene Nanoribbons in Solution Revealed by Two-Dimensional Electronic Spectroscopy.
    Nagahara T; Camargo FVA; Xu F; Ganzer L; Russo M; Zhang P; Perri A; de la Cruz Valbuena G; Heisler IA; D'Andrea C; Polli D; Müllen K; Feng X; Mai Y; Cerullo G
    Nano Lett; 2024 Jan; 24(3):797-804. PubMed ID: 38189787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled metal atom chains on graphene nanoribbons.
    Choi SM; Jhi SH
    Phys Rev Lett; 2008 Dec; 101(26):266105. PubMed ID: 19437653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J; Wang XM; Chen YF; Wang JS
    J Phys Condens Matter; 2012 Jul; 24(29):295403. PubMed ID: 22739359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons.
    Wang XY; Urgel JI; Barin GB; Eimre K; Di Giovannantonio M; Milani A; Tommasini M; Pignedoli CA; Ruffieux P; Feng X; Fasel R; Müllen K; Narita A
    J Am Chem Soc; 2018 Jul; 140(29):9104-9107. PubMed ID: 29990420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT
    Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons.
    Zhang D; Yang J; Li Y
    Small; 2013 Apr; 9(8):1284-304. PubMed ID: 23529997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-Narrow Low-Bandgap Graphene Nanoribbons from Bromoperylenes-Synthesis and Terahertz-Spectroscopy.
    Jänsch D; Ivanov I; Zagranyarski Y; Duznovic I; Baumgarten M; Turchinovich D; Li C; Bonn M; Müllen K
    Chemistry; 2017 Apr; 23(20):4870-4875. PubMed ID: 28318065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.