These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28525278)

  • 41. How size, edge shape, functional groups and embeddedness influence the electronic structure and partial optical properties of graphene nanoribbons.
    Feng J; Mao X; Zhu H; Yang Z; Cui M; Ma Y; Zhang D; Bi S
    Phys Chem Chem Phys; 2021 Sep; 23(36):20695-20701. PubMed ID: 34516597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bottom-up synthesis of chemically precise graphene nanoribbons.
    Narita A; Feng X; Müllen K
    Chem Rec; 2015 Feb; 15(1):295-309. PubMed ID: 25414146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
    Bai J; Duan X; Huang Y
    Nano Lett; 2009 May; 9(5):2083-7. PubMed ID: 19344151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raman spectroscopy of lithographically patterned graphene nanoribbons.
    Ryu S; Maultzsch J; Han MY; Kim P; Brus LE
    ACS Nano; 2011 May; 5(5):4123-30. PubMed ID: 21452879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Narrow graphene nanoribbons from carbon nanotubes.
    Jiao L; Zhang L; Wang X; Diankov G; Dai H
    Nature; 2009 Apr; 458(7240):877-80. PubMed ID: 19370031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride.
    Wang HS; Chen L; Elibol K; He L; Wang H; Chen C; Jiang C; Li C; Wu T; Cong CX; Pennycook TJ; Argentero G; Zhang D; Watanabe K; Taniguchi T; Wei W; Yuan Q; Meyer JC; Xie X
    Nat Mater; 2021 Feb; 20(2):202-207. PubMed ID: 32958881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of graphene nanoribbons under low-voltage electron irradiation.
    Zhu W; Wang H; Yang W
    Nanoscale; 2012 Aug; 4(15):4555-61. PubMed ID: 22699261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase.
    Xu F; Yu C; Tries A; Zhang H; Kläui M; Basse K; Hansen MR; Bilbao N; Bonn M; Wang HI; Mai Y
    J Am Chem Soc; 2019 Jul; 141(28):10972-10977. PubMed ID: 31268310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Edge and Surface Plasmons in Graphene Nanoribbons.
    Fei Z; Goldflam MD; Wu JS; Dai S; Wagner M; McLeod AS; Liu MK; Post KW; Zhu S; Janssen GC; Fogler MM; Basov DN
    Nano Lett; 2015 Dec; 15(12):8271-6. PubMed ID: 26571096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustoelectric Current in Graphene Nanoribbons.
    Poole T; Nash GR
    Sci Rep; 2017 May; 7(1):1767. PubMed ID: 28496129
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrahigh conductivity of graphene nanoribbons doped with ordered nitrogen.
    Li XF; Yan WW; Rao JR; Liu DX; Zhang XH; Cao X; Luo Y
    Nanoscale Adv; 2019 Nov; 1(11):4359-4364. PubMed ID: 36134412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Raman Fingerprints of Atomically Precise Graphene Nanoribbons.
    Verzhbitskiy IA; Corato MD; Ruini A; Molinari E; Narita A; Hu Y; Schwab MG; Bruna M; Yoon D; Milana S; Feng X; Müllen K; Ferrari AC; Casiraghi C; Prezzi D
    Nano Lett; 2016 Jun; 16(6):3442-7. PubMed ID: 26907096
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion.
    Hu Y; Xie P; De Corato M; Ruini A; Zhao S; Meggendorfer F; Straasø LA; Rondin L; Simon P; Li J; Finley JJ; Hansen MR; Lauret JS; Molinari E; Feng X; Barth JV; Palma CA; Prezzi D; Müllen K; Narita A
    J Am Chem Soc; 2018 Jun; 140(25):7803-7809. PubMed ID: 29779378
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrafast Terahertz Photoconductivity of Photovoltaic Polymer-Fullerene Blends: A Comparative Study Correlated with Photovoltaic Device Performance.
    Jin Z; Gehrig D; Dyer-Smith C; Heilweil EJ; Laquai F; Bonn M; Turchinovich D
    J Phys Chem Lett; 2014 Nov; 5(21):3662-8. PubMed ID: 26278734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons.
    Marangoni T; Haberer D; Rizzo DJ; Cloke RR; Fischer FR
    Chemistry; 2016 Sep; 22(37):13037-40. PubMed ID: 27458978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pseudopotential-based studies of electron transport in graphene and graphene nanoribbons.
    Fischetti MV; Kim J; Narayanan S; Ong ZY; Sachs C; Ferry DK; Aboud SJ
    J Phys Condens Matter; 2013 Nov; 25(47):473202. PubMed ID: 24135050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Observation of Raman g-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges.
    Yang R; Shi Z; Zhang L; Shi D; Zhang G
    Nano Lett; 2011 Oct; 11(10):4083-8. PubMed ID: 21899347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons.
    Abbas AN; Liu G; Narita A; Orosco M; Feng X; Müllen K; Zhou C
    J Am Chem Soc; 2014 May; 136(21):7555-8. PubMed ID: 24831246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.