These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 28525817)
1. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Bonanno G; Cirelli GL Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817 [TBL] [Abstract][Full Text] [Related]
2. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Klink A Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Chandra R; Yadav S Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504 [TBL] [Abstract][Full Text] [Related]
4. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692 [TBL] [Abstract][Full Text] [Related]
5. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Duman F; Urey E; Koca FD Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443 [TBL] [Abstract][Full Text] [Related]
6. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. Ben Salem Z; Laffray X; Al-Ashoor A; Ayadi H; Aleya L J Environ Sci (China); 2017 Apr; 54():56-68. PubMed ID: 28391949 [TBL] [Abstract][Full Text] [Related]
7. Investigating Co, Cu, and Pb retention and remobilization after drying and rewetting treatments in greenhouse laboratory-scale constructed treatments with and without Typha angustifolia, and connected phytoremediation potential. Nabuyanda MM; van Bruggen J; Kelderman P; Irvine K J Environ Manage; 2019 Apr; 236():510-518. PubMed ID: 30771671 [TBL] [Abstract][Full Text] [Related]
8. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology. Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; Castro EM; Pereira FJ Braz J Biol; 2018 Aug; 78(3):509-516. PubMed ID: 29995113 [TBL] [Abstract][Full Text] [Related]
9. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Rana V; Maiti SK Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705 [TBL] [Abstract][Full Text] [Related]
10. Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn. Mufarrege MM; Hadad HR; Di Luca GA; Maine MA Ecotoxicol Environ Saf; 2014 Jul; 105():90-6. PubMed ID: 24793518 [TBL] [Abstract][Full Text] [Related]
11. Typha latifolia (broadleaf cattail) as bioindicator of different types of pollution in aquatic ecosystems-application of self-organizing feature map (neural network). Klink A; Polechońska L; Cegłowska A; Stankiewicz A Environ Sci Pollut Res Int; 2016 Jul; 23(14):14078-86. PubMed ID: 27044291 [TBL] [Abstract][Full Text] [Related]
12. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Bonanno G; Borg JA; Di Martino V Sci Total Environ; 2017 Jan; 576():796-806. PubMed ID: 27810764 [TBL] [Abstract][Full Text] [Related]
13. Long-term study of Cr, Ni, Zn, and P distribution in Typha domingensis growing in a constructed wetland. Hadad HR; Mufarrege MLM; Di Luca GA; Maine MA Environ Sci Pollut Res Int; 2018 Jun; 25(18):18130-18137. PubMed ID: 29691750 [TBL] [Abstract][Full Text] [Related]
14. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics. Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Regvar M; Pelicon P; Schröder P J Hazard Mater; 2013 Mar; 248-249():371-8. PubMed ID: 23416480 [TBL] [Abstract][Full Text] [Related]
15. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. Mufarrege MM; Hadad HR; Di Luca GA; Maine MA Environ Sci Pollut Res Int; 2015 Jan; 22(1):286-92. PubMed ID: 25062549 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf. Haghnazar H; Sabbagh K; Johannesson KH; Pourakbar M; Aghayani E Mar Pollut Bull; 2023 Mar; 188():114699. PubMed ID: 36764150 [TBL] [Abstract][Full Text] [Related]
17. Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent. Rana V; Maiti SK Bull Environ Contam Toxicol; 2018 Jul; 101(1):55-60. PubMed ID: 29761304 [TBL] [Abstract][Full Text] [Related]
18. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Anning AK; Akoto R Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880 [TBL] [Abstract][Full Text] [Related]
19. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323 [TBL] [Abstract][Full Text] [Related]
20. Spatial variation of heavy metals and uptake potential by Typha domingensis in a tropical reservoir in the midlands region, Zimbabwe. Dube T; Mhangwa G; Makaka C; Parirenyatwa B; Muteveri T Environ Sci Pollut Res Int; 2019 Apr; 26(10):10097-10105. PubMed ID: 30756354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]