These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28525817)

  • 41. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    Int J Phytoremediation; 2015; 17(9):900-6. PubMed ID: 25831275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland.
    Gomes MV; de Souza RR; Teles VS; Araújo Mendes É
    Chemosphere; 2014 May; 103():228-33. PubMed ID: 24369743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lead, chromium and manganese removal by in vitro root cultures of two aquatic macrophytes species: Typha latifolia L. and Scirpus americanus pers.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Int J Phytoremediation; 2011 Jul; 13(6):538-51. PubMed ID: 21972501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax.
    Bonanno G
    Ecotoxicol Environ Saf; 2013 Nov; 97():124-30. PubMed ID: 23932595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Typha latifolia and Thelypteris palustris behavior in a pilot system for the refinement of livestock wastewaters: A case of study.
    Stroppa N; Onelli E; Hejna M; Rossi L; Gagliardi A; Bini L; Baldi A; Moscatelli A
    Chemosphere; 2020 Feb; 240():124915. PubMed ID: 31563105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity.
    Liu Y; Chen J; Lu S; Yang L; Qian J; Cao S
    Environ Technol; 2016 Nov; 37(21):2743-9. PubMed ID: 26959972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cr(III) and Cr(VI) removal in floating treatment wetlands (FTWs) using
    Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Montañez F; Campagnoli MA
    Int J Phytoremediation; 2023; 25(13):1819-1829. PubMed ID: 37035876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of heavy metals on the total protein concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus wastewater.
    Manios T; Stentiford EI; Millner P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Sep; 37(8):1441-51. PubMed ID: 12369637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal and accumulation of As, Cd and Cr by Typha latifolia.
    Leura-Vicencio A; Alonso-Castro AJ; Carranza-Álvarez C; Loredo-Portales R; Alfaro-De la Torre MC; García-De la Cruz RF
    Bull Environ Contam Toxicol; 2013 Jun; 90(6):650-3. PubMed ID: 23400863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions.
    Alonso-Castro AJ; Carranza-Alvarez C; Alfaro-De la Torre MC; Chávez-Guerrero L; García-De la Cruz RF
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):688-96. PubMed ID: 19536587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.
    Mustapha HI; van Bruggen JJA; Lens PNL
    Int J Phytoremediation; 2018 Jan; 20(1):44-53. PubMed ID: 28598201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arsenic Distribution, Accumulation and Tolerance Mechanisms of Typha angustifolia in Different Phenological Growth Stages.
    Yang G; Zhong H; Liu X; Liu C; Li S; Hou L; Liu Y; Wang Y; Ren W; Duan C
    Bull Environ Contam Toxicol; 2020 Mar; 104(3):358-365. PubMed ID: 31975014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lead accumulation and association with Fe on Typha latifolia root from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Wu M; Zhang W; Yu L; Zhu Q; Zhang K; Liu CJ; Tappero R
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3743-50. PubMed ID: 23161499
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ecological health risk assessment of microplastics and heavy metals in sediments, water, hydrophytes (Alternanthera philoxeroides, Typha latifolia, and Ipomoea carnea), and fish (Labeo rohita) in Marala wetlands in Sialkot, Pakistan.
    Arshad K; Aqeel M; Noman A; Nazir A; Mahmood A; Rizvi ZF; Sarfraz W; Hyder S; Zaka S; Khalid N
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41272-41285. PubMed ID: 36630039
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland.
    Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C
    J Environ Manage; 2009 Jan; 90(1):355-63. PubMed ID: 18079048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with
    Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT
    Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wetland plants as indicators of heavy metal contamination.
    Phillips DP; Human LRD; Adams JB
    Mar Pollut Bull; 2015 Mar; 92(1-2):227-232. PubMed ID: 25599629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoremediation of arsenic in submerged soil by wetland plants.
    Jomjun N; Siripen T; Maliwan S; Jintapat N; Prasak T; Somporn C; Petch P
    Int J Phytoremediation; 2011 Jan; 13(1):35-46. PubMed ID: 21598766
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removing heavy metals by in vitro cultures.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Methods Mol Biol; 2012; 877():265-70. PubMed ID: 22610634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.