These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1077 related articles for article (PubMed ID: 28525850)
1. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M; Mirroshandel AA Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850 [TBL] [Abstract][Full Text] [Related]
2. Detection of lead (II) with a "turn-on" fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Li M; Zhou X; Guo S; Wu N Biosens Bioelectron; 2013 May; 43():69-74. PubMed ID: 23277342 [TBL] [Abstract][Full Text] [Related]
3. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Arvand M; Mirroshandel AA Food Chem; 2019 May; 280():115-122. PubMed ID: 30642476 [TBL] [Abstract][Full Text] [Related]
4. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag Adegoke O; Pereira-Barros MA; Zolotovskaya S; Abdolvand A; Daeid NN Mikrochim Acta; 2020 Jan; 187(2):104. PubMed ID: 31912290 [TBL] [Abstract][Full Text] [Related]
5. Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Lu X; Wang C; Qian J; Ren C; An K; Wang K Anal Chim Acta; 2019 Jan; 1047():163-171. PubMed ID: 30567646 [TBL] [Abstract][Full Text] [Related]
6. Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet. Alibolandi M; Hadizadeh F; Vajhedin F; Abnous K; Ramezani M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():611-9. PubMed ID: 25579964 [TBL] [Abstract][Full Text] [Related]
7. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X; Liu B; Yang C; Li C Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():288-93. PubMed ID: 24835931 [TBL] [Abstract][Full Text] [Related]
8. Detection of iprobenfos and edifenphos using a new multi-aptasensor. Kwon YS; Nguyen VT; Park JG; Gu MB Anal Chim Acta; 2015 Apr; 868():60-6. PubMed ID: 25813235 [TBL] [Abstract][Full Text] [Related]
9. An ''off-on'' phosphorescent aptasensor switch for the detection of ATP. Xiong Y; Cheng Y; Wang L; Li Y Talanta; 2018 Dec; 190():226-234. PubMed ID: 30172503 [TBL] [Abstract][Full Text] [Related]
10. Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS Chen J; Li Y; Huang Y; Zhang H; Chen X; Qiu H Mikrochim Acta; 2019 Jan; 186(2):58. PubMed ID: 30617543 [TBL] [Abstract][Full Text] [Related]
11. A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes. Miao YB; Ren HX; Gan N; Zhou Y; Cao Y; Li T; Chen Y Anal Chim Acta; 2016 Jul; 929():49-55. PubMed ID: 27251948 [TBL] [Abstract][Full Text] [Related]
12. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Zhou ZM; Zhou J; Chen J; Yu RN; Zhang MZ; Song JT; Zhao YD Biosens Bioelectron; 2014 Sep; 59():397-403. PubMed ID: 24768819 [TBL] [Abstract][Full Text] [Related]
13. Aptamer-based turn-on detection of thrombin in biological fluids based on efficient phosphorescence energy transfer from Mn-doped ZnS quantum dots to carbon nanodots. Zhang L; Cui P; Zhang B; Gao F Chemistry; 2013 Jul; 19(28):9242-50. PubMed ID: 23712510 [TBL] [Abstract][Full Text] [Related]
14. Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of Pseudomonas aeruginosa in Food Samples. Gao R; Zhong Z; Gao X; Jia L J Agric Food Chem; 2018 Oct; 66(41):10898-10905. PubMed ID: 30247907 [TBL] [Abstract][Full Text] [Related]
15. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786 [TBL] [Abstract][Full Text] [Related]
16. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. Li P; Luo C; Chen X; Huang C Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123557. PubMed ID: 37866265 [TBL] [Abstract][Full Text] [Related]
17. A triclosan turn-ON fluorescence sensor based on thiol-capped core/shell quantum dots. Montaseri H; Forbes PBC Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():370-379. PubMed ID: 29958126 [TBL] [Abstract][Full Text] [Related]
18. A highly sensitive protocol for the determination of Hg(2+) in environmental water using time-gated mode. Huang D; Niu C; Zeng G; Wang X; Lv X Talanta; 2015 Jan; 132():606-12. PubMed ID: 25476351 [TBL] [Abstract][Full Text] [Related]
19. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer. Miao Y; Lv J; Yan G Biosens Bioelectron; 2017 Aug; 94():263-270. PubMed ID: 28288446 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Dong H; Gao W; Yan F; Ji H; Ju H Anal Chem; 2010 Jul; 82(13):5511-7. PubMed ID: 20524633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]