These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 28525940)
1. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses. Garcerá C; Moltó E; Chueca P Sci Total Environ; 2017 Dec; 599-600():1344-1362. PubMed ID: 28525940 [TBL] [Abstract][Full Text] [Related]
2. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.). Grella M; Marucco P; Manzone M; Gallart M; Balsari P Sci Total Environ; 2017 Feb; 578():427-439. PubMed ID: 27836339 [TBL] [Abstract][Full Text] [Related]
3. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
4. Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses. Soheilifard F; Marzban A; Ghaseminejad Raini M; Taki M; van Zelm R Sci Total Environ; 2020 Aug; 732():139118. PubMed ID: 32438148 [TBL] [Abstract][Full Text] [Related]
5. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
6. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
7. Low-drift nozzles vs. standard nozzles for pesticide application in the biological efficacy trials of pesticides in apple pest and disease control. Doruchowski G; Świechowski W; Masny S; Maciesiak A; Tartanus M; Bryk H; Hołownicki R Sci Total Environ; 2017 Jan; 575():1239-1246. PubMed ID: 27720255 [TBL] [Abstract][Full Text] [Related]
8. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies. Torrent X; Gregorio E; Rosell-Polo JR; Arnó J; Peris M; van de Zande JC; Planas S Sci Total Environ; 2020 Apr; 714():136666. PubMed ID: 31986387 [TBL] [Abstract][Full Text] [Related]
9. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel. Ferguson JC; Chechetto RG; O'Donnell CC; Dorr GJ; Moore JH; Baker GJ; Powis KJ; Hewitt AJ Pest Manag Sci; 2016 Aug; 72(8):1460-6. PubMed ID: 26732308 [TBL] [Abstract][Full Text] [Related]
10. Off-target loss in ornamental nurseries with different spray techniques. Zhu H; Derksen RC; Krause CR; Zondag RH Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508 [TBL] [Abstract][Full Text] [Related]
11. Optimization of the spray application technology in bay laurel (Laurus nobilis). Nuyttens D; Braekman P; Foque D Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514 [TBL] [Abstract][Full Text] [Related]
12. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. Kasiotis KM; Glass CR; Tsakirakis AN; Machera K Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292 [TBL] [Abstract][Full Text] [Related]
13. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
14. Evaluationof compact air-induction flat fan nozzles for herbicide applications: Spray drift and biological efficacy. Wang S; Li X; Nuyttens D; Zhang L; Liu Y; Li X Front Plant Sci; 2023; 14():1018626. PubMed ID: 36818846 [TBL] [Abstract][Full Text] [Related]
15. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
16. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
17. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
18. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: evaluation of canopy distribution and off-target losses. Grella M; Miranda-Fuentes A; Marucco P; Balsari P Pest Manag Sci; 2020 Dec; 76(12):4173-4191. PubMed ID: 32592438 [TBL] [Abstract][Full Text] [Related]
19. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 1. Classification using indirect methods. Torrent X; Gregorio E; Douzals JP; Tinet C; Rosell-Polo JR; Planas S Sci Total Environ; 2019 Nov; 692():1322-1333. PubMed ID: 31248581 [TBL] [Abstract][Full Text] [Related]
20. Pneumatic spray delivery-based solid set canopy delivery system for oblique banded leaf roller and codling moth control in a high-density modern apple orchard. Sahni RK; Ranjan R; Hoheisel GA; Khot LR; Beers EH; Grieshop MJ Pest Manag Sci; 2022 Nov; 78(11):4793-4801. PubMed ID: 35895013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]