These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28527436)

  • 1. Mechanisms of resonant low frequency Raman scattering from metallic nanoparticle Lamb modes.
    Girard A; Lermé J; Gehan H; Margueritat J; Mermet A
    J Chem Phys; 2017 May; 146(19):194201. PubMed ID: 28527436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy.
    Girard A; Gehan H; Crut A; Mermet A; Saviot L; Margueritat J
    Nano Lett; 2016 Jun; 16(6):3843-9. PubMed ID: 27176093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals.
    Guc M; Levcenko S; Bodnar IV; Izquierdo-Roca V; Fontane X; Volkova LV; Arushanov E; Pérez-Rodríguez A
    Sci Rep; 2016 Jan; 6():19414. PubMed ID: 26776727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.
    Sugawa K; Tanoue Y; Ube T; Yanagida S; Yamamuro T; Kusaka Y; Ushijima H; Akiyama T
    Photochem Photobiol Sci; 2014 Jan; 13(1):82-91. PubMed ID: 24220219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials.
    Liang L; Zhang J; Sumpter BG; Tan QH; Tan PH; Meunier V
    ACS Nano; 2017 Dec; 11(12):11777-11802. PubMed ID: 29099577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping dependence of bilayer resonant spin excitations in (Y, Ca)Ba2Cu3O6+x.
    Pailhès S; Ulrich C; Fauqué B; Hinkov V; Sidis Y; Ivanov A; Lin CT; Keimer B; Bourges P
    Phys Rev Lett; 2006 Jun; 96(25):257001. PubMed ID: 16907334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of the low frequency mechanical modes and Raman spectra of the M13 bacteriophage capsid with atomic detail.
    Dykeman EC; Sankey OF
    J Phys Condens Matter; 2009 Jan; 21(3):035116. PubMed ID: 21817274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.
    Dmitriev PA; Baranov DG; Milichko VA; Makarov SV; Mukhin IS; Samusev AK; Krasnok AE; Belov PA; Kivshar YS
    Nanoscale; 2016 May; 8(18):9721-6. PubMed ID: 27113352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer.
    Dadosh T; Sperling J; Bryant GW; Breslow R; Shegai T; Dyshel M; Haran G; Bar-Joseph I
    ACS Nano; 2009 Jul; 3(7):1988-94. PubMed ID: 19534506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic Mode Hybridization in a Single Dimer of Gold Nanoparticles.
    Girard A; Gehan H; Mermet A; Bonnet C; Lermé J; Berthelot A; Cottancin E; Crut A; Margueritat J
    Nano Lett; 2018 Jun; 18(6):3800-3806. PubMed ID: 29715427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters.
    Saikin SK; Olivares-Amaya R; Rappoport D; Stopa M; Aspuru-Guzik A
    Phys Chem Chem Phys; 2009 Nov; 11(41):9401-11. PubMed ID: 19830323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids.
    Dykeman EC; Sankey OF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021918. PubMed ID: 20365606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous Phonon Modes in Black Phosphorus Revealed by Resonant Raman Scattering.
    Wang X; Mao N; Luo W; Kitadai H; Ling X
    J Phys Chem Lett; 2018 Jun; 9(11):2830-2837. PubMed ID: 29746770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy of graphite.
    Reich S; Thomsen C
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2271-88. PubMed ID: 15482979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).
    Willitsford AH; Chadwick CT; Kurtz S; Philbrick CR; Hallen H
    J Phys Chem A; 2016 Feb; 120(4):503-6. PubMed ID: 26731431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves.
    Dodson JC; Inman DJ
    J Acoust Soc Am; 2014 Nov; 136(5):2532-43. PubMed ID: 25373955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials.
    Liang L; Puretzky AA; Sumpter BG; Meunier V
    Nanoscale; 2017 Oct; 9(40):15340-15355. PubMed ID: 28984333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.