These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 28527438)
1. The fate of the tert-butyl radical in low-temperature autoignition reactions. Moore KB; Turney JM; Schaefer HF J Chem Phys; 2017 May; 146(19):194304. PubMed ID: 28527438 [TBL] [Abstract][Full Text] [Related]
2. High-level theoretical characterization of the vinoxy radical ( Weidman JD; Allen RT; Moore KB; Schaefer HF J Chem Phys; 2018 May; 148(18):184308. PubMed ID: 29764132 [TBL] [Abstract][Full Text] [Related]
3. Temperature and Pressure Dependent Kinetics of QOOH Decomposition and Reaction with O Whelan CA; Blitz MA; Shannon R; Onel L; Lockhart JP; Seakins PW; Stone D J Phys Chem A; 2019 Nov; 123(47):10254-10262. PubMed ID: 31661276 [TBL] [Abstract][Full Text] [Related]
4. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals. Zhu L; Bozzelli JW; Kardos LM J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics. Li Y; Wang Y; Zhang RM; He X; Xu X J Chem Theory Comput; 2023 Jun; 19(11):3284-3302. PubMed ID: 37164004 [TBL] [Abstract][Full Text] [Related]
6. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
7. Gas-phase kinetics study of reaction of OH radical with CH3NHNH2 by second-order multireference perturbation theory. Sun H; Zhang P; Law CK J Phys Chem A; 2012 May; 116(21):5045-56. PubMed ID: 22545789 [TBL] [Abstract][Full Text] [Related]
8. Thermochemistry, reaction paths, and kinetics on the tert-isooctane radical reaction with O2. Snitsiriwat S; Bozzelli JW J Phys Chem A; 2014 Jul; 118(26):4631-46. PubMed ID: 24894154 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
10. Peptide bond formation via glycine condensation in the gas phase. Van Dornshuld E; Vergenz RA; Tschumper GS J Phys Chem B; 2014 Jul; 118(29):8583-90. PubMed ID: 24992687 [TBL] [Abstract][Full Text] [Related]
11. A theoretical study of the atmospherically important radical-radical reaction BrO + HO Chow R; Mok DK; Lee EP; Dyke JM Phys Chem Chem Phys; 2016 Nov; 18(44):30554-30569. PubMed ID: 27785502 [TBL] [Abstract][Full Text] [Related]
12. Infrared frequency-modulation probing of product formation in alkyl + O2 reactions. Part IV. Reactions of propyl and butyl radicals with O2. DeSain JD; Taatjes CA; Miller JA; Klippenstein SJ; Hahn DK Faraday Discuss; 2001; (119):101-20; discussion 121-43. PubMed ID: 11877987 [TBL] [Abstract][Full Text] [Related]
13. Quantum Chemical Study of Autoignition of Methyl Butanoate. Jiao Y; Zhang F; Dibble TS J Phys Chem A; 2015 Jul; 119(28):7282-92. PubMed ID: 25760925 [TBL] [Abstract][Full Text] [Related]
14. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F(-) + CH3F SN2 and proton-abstraction reactions. Szabó I; Telekes H; Czakó G J Chem Phys; 2015 Jun; 142(24):244301. PubMed ID: 26133422 [TBL] [Abstract][Full Text] [Related]
15. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks. Cooksy AL; King HF; Richardson WH J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170 [TBL] [Abstract][Full Text] [Related]
16. Energetics and mechanisms for the acetonyl radical + O Weidman JD; Turney JM; Schaefer HF J Chem Phys; 2020 Mar; 152(11):114301. PubMed ID: 32199416 [TBL] [Abstract][Full Text] [Related]
17. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran. Antonov IO; Zádor J; Rotavera B; Papajak E; Osborn DL; Taatjes CA; Sheps L J Phys Chem A; 2016 Aug; 120(33):6582-95. PubMed ID: 27441526 [TBL] [Abstract][Full Text] [Related]
18. New insight into the gas-phase bimolecular self-reaction of the HOO radical. Anglada JM; Olivella S; Solé A J Phys Chem A; 2007 Mar; 111(9):1695-704. PubMed ID: 17290977 [TBL] [Abstract][Full Text] [Related]
19. Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study. Kuzhanthaivelan S; Rajakumar B J Phys Chem A; 2018 Jul; 122(29):6134-6146. PubMed ID: 29963867 [TBL] [Abstract][Full Text] [Related]
20. Reactions of diborane with ammonia and ammonia borane: catalytic effects for multiple pathways for hydrogen release. Nguyen VS; Matus MH; Nguyen MT; Dixon DA J Phys Chem A; 2008 Oct; 112(40):9946-54. PubMed ID: 18767778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]