These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28527784)

  • 21. A partial lesion model of Parkinson's disease in mice--characterization of a 6-OHDA-induced medial forebrain bundle lesion.
    Boix J; Padel T; Paul G
    Behav Brain Res; 2015 May; 284():196-206. PubMed ID: 25698603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease.
    Yildirim FB; Ozsoy O; Tanriover G; Kaya Y; Ogut E; Gemici B; Dilmac S; Ozkan A; Agar A; Aslan M
    Neurochem Int; 2014 Dec; 79():1-11. PubMed ID: 25263280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of respiratory-related trigeminal, hypoglossal and phrenic activities.
    St John WM; Bledsoe TA
    Respir Physiol; 1985 Oct; 62(1):61-78. PubMed ID: 4070836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonvagal modulation of hypoglossal neural activity.
    Haxhiu MA; Cherniack NS; Mitra J; van Lunteren E; Strohl KP
    Respiration; 1992; 59(2):65-71. PubMed ID: 1620984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of vagal afferents on discharge patterns and CO2-responsiveness of efferent superior laryngeal, hypoglossal, and phrenic respiratory activities in anesthetized rats.
    Fukuda Y; Honda Y
    Jpn J Physiol; 1982; 32(5):689-98. PubMed ID: 6818396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease.
    Sun YN; Wang T; Wang Y; Han LN; Li LB; Zhang YM; Liu J
    Neuropharmacology; 2015 Aug; 95():181-91. PubMed ID: 25797491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pneumotaxic mechanisms influence phrenic, hypoglossal, and trigeminal activities.
    St John WM
    Exp Neurol; 1987 Aug; 97(2):301-14. PubMed ID: 3609214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroencephalographic and respiratory activities during acute intermittent hypoxia in anesthetized rats.
    Budzinska K; Ilasz R
    J Physiol Pharmacol; 2007 Nov; 58 Suppl 5(Pt 1):85-93. PubMed ID: 18204119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic changes of hypoglossal and phrenic activities by hypoxia and hypercapnia.
    St John WM; Knuth KV; Rist KE
    Respir Physiol; 1984 May; 56(2):237-44. PubMed ID: 6463430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective loss of high-frequency oscillations in phrenic and hypoglossal activity in the decerebrate rat during gasping.
    Marchenko V; Rogers RF
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1414-29. PubMed ID: 16825420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory control of hypoglossal motoneurones in the rat.
    Peever JH; Mateika JH; Duffin J
    Pflugers Arch; 2001 Apr; 442(1):78-86. PubMed ID: 11374072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of hypoglossal and phrenic nerves to decreased respiratory drive in cats.
    Haxhiu MA; Mitra J; van Lunteren E; Prabhakar N; Bruce EN; Cherniack NS
    Respiration; 1986; 50(2):130-8. PubMed ID: 3749614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Episodic hypoxia induces long-term facilitation of neural drive to tongue protrudor and retractor muscles.
    Fuller DD
    J Appl Physiol (1985); 2005 May; 98(5):1761-7. PubMed ID: 15640385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of chemical stimuli on nerves supplying upper airway muscles.
    Weiner D; Mitra J; Salamone J; Cherniack NS
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Mar; 52(3):530-6. PubMed ID: 7068470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent.
    Bach KB; Mitchell GS
    Respir Physiol; 1996 Jul; 104(2-3):251-60. PubMed ID: 8893371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of almitrine on hypoglossal and phrenic electroneurograms.
    Weese-Mayer DE; Brouillette RT; Klemka L; Hunt CE
    J Appl Physiol (1985); 1985 Jul; 59(1):105-12. PubMed ID: 3928579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in respiratory neural activities between vagal (superior laryngeal), hypoglossal, and phrenic nerves in the anesthetized rat.
    Fukuda Y; Honda Y
    Jpn J Physiol; 1982; 32(3):387-98. PubMed ID: 6813545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Propofol suppresses the responses in hypoglossal nerve activity to hypercapnic-hypoxic stimulation].
    Nakamura S; Ohno R; Suzuki M; Abe T; Narita Y; Kusumoto G; Tsuchiya M; Mizumoto H; Murakami Y; Nagasaka H; Miyata Y
    Masui; 2004 Nov; 53(11):1234-42. PubMed ID: 15587172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of unilateral 6-OHDA lesion in medial forebrain bundle on the motor, cognitive dysfunctions and vulnerability of different striatal interneuron types in rats.
    Ma Y; Zhan M; OuYang L; Li Y; Chen S; Wu J; Chen J; Luo C; Lei W
    Behav Brain Res; 2014 Jun; 266():37-45. PubMed ID: 24613235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions.
    Bagga V; Dunnett SB; Fricker RA
    Behav Brain Res; 2015 Jul; 288():107-17. PubMed ID: 25841616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.