BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28528024)

  • 1. Structure-diverse Phylomer libraries as a rich source of bioactive hits from phenotypic and target directed screens against intracellular proteins.
    Watt PM; Milech N; Stone SR
    Curr Opin Chem Biol; 2017 Jun; 38():127-133. PubMed ID: 28528024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic screening of phylomer peptide libraries derived from genome fragments to identify and validate new targets and therapeutics.
    Watt PM
    Future Med Chem; 2009 May; 1(2):257-65. PubMed ID: 21425969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The construction of "phylomer" peptide libraries as a rich source of potent inhibitors of protein/protein interactions.
    Milech N; Watt P
    Methods Mol Biol; 2012; 899():43-60. PubMed ID: 22735945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening for peptide drugs from the natural repertoire of biodiverse protein folds.
    Watt PM
    Nat Biotechnol; 2006 Feb; 24(2):177-83. PubMed ID: 16465163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery.
    Hoffmann K; Milech N; Juraja SM; Cunningham PT; Stone SR; Francis RW; Anastasas M; Hall CM; Heinrich T; Bogdawa HM; Winslow S; Scobie MN; Dewhurst RE; Florez L; Ong F; Kerfoot M; Champain D; Adams AM; Fletcher S; Viola HM; Hool LC; Connor T; Longville BAC; Tan YF; Kroeger K; Morath V; Weiss GA; Skerra A; Hopkins RM; Watt PM
    Sci Rep; 2018 Aug; 8(1):12538. PubMed ID: 30135446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer(®) peptides.
    Jefferies R; Yang R; Woh CK; Weldt T; Milech N; Estcourt A; Armstrong T; Hopkins R; Watt P; Reid S; Armson A; Ryan UM
    Exp Parasitol; 2015 Jan; 148():40-8. PubMed ID: 25447124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-based peptide screening to access the undruggable target space.
    Hennemann H; Wirths S; Carl C
    Eur J Med Chem; 2015 Apr; 94():489-96. PubMed ID: 25458182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond.
    Valentine J; Tavassoli A
    Methods Enzymol; 2018; 610():117-134. PubMed ID: 30390796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mRNA-display-based selections using synthetic peptide and natural protein libraries.
    Huang BC; Liu R
    Biochemistry; 2007 Sep; 46(35):10102-12. PubMed ID: 17685586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The benefits of constructing leads from fragment hits.
    Foloppe N
    Future Med Chem; 2011 Jul; 3(9):1111-5. PubMed ID: 21806375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Identification of Murine M2 Macrophage Peptide Targeting Ligands by Phage Display and Next-Generation Sequencing.
    Liu GW; Livesay BR; Kacherovsky NA; Cieslewicz M; Lutz E; Waalkes A; Jensen MC; Salipante SJ; Pun SH
    Bioconjug Chem; 2015 Aug; 26(8):1811-7. PubMed ID: 26161996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides.
    Houghten RA; Appel JR; Blondelle SE; Cuervo JH; Dooley CT; Pinilla C
    Biotechniques; 1992 Sep; 13(3):412-21. PubMed ID: 1382470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of a 6-mer amyloid-beta protein derived phage display library for molecular targeting of amyloid plaques in Alzheimer's disease: Comparison with two cyclic heptapeptides derived from a randomized phage display library.
    Larbanoix L; Burtea C; Ansciaux E; Laurent S; Mahieu I; Vander Elst L; Muller RN
    Peptides; 2011 Jun; 32(6):1232-43. PubMed ID: 21575663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an optical microplate label-free platform in the screening of chemical libraries for direct binding to a nuclear receptor.
    Vela L; Lowe PN; Gerstenmaier J; Laing LG; Stimmel JB; Orband-Miller LA; Martin JJ
    Assay Drug Dev Technol; 2011 Oct; 9(5):532-48. PubMed ID: 21438675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.
    Duffy FJ; O'Donovan D; Devocelle M; Moran N; O'Connell DJ; Shields DC
    J Chem Inf Model; 2015 Mar; 55(3):600-13. PubMed ID: 25668361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phenotypic screens or one stone to kill two birds: discover the target and its pharmacological regulator].
    Prudent R; Soleilhac E; Barette C; Fauvarque MO; Lafanechère L
    Med Sci (Paris); 2013 Oct; 29(10):897-905. PubMed ID: 24148129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery.
    Sohrabi C; Foster A; Tavassoli A
    Nat Rev Chem; 2020 Feb; 4(2):90-101. PubMed ID: 37128052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. hCXCR1 and hCXCR2 antagonists derived from combinatorial peptide libraries.
    Houimel M; Mazzucchelli L
    Cytokine; 2012 Mar; 57(3):322-31. PubMed ID: 22189418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo discovery of bioactive cyclic peptides using bacterial display and flow cytometry.
    Shivange AV; Daugherty PS
    Methods Mol Biol; 2015; 1248():139-53. PubMed ID: 25616331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptic protein fragments as an emerging source of peptide drugs.
    Ng JH; Ilag LL
    IDrugs; 2006 May; 9(5):343-6. PubMed ID: 16676270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.