These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2852808)

  • 41. Monitoring fermentation parameters during phytase production in column-type bioreactor using a new data acquisition system.
    Spier MR; Woiciechowski AL; Letti LA; Scheidt GN; Sturm W; Rodriguez-León JA; de Carvalho JC; Dergint DE; Soccol CR
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1033-41. PubMed ID: 20454907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1431-6. PubMed ID: 25732541
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase.
    Ullah AH; Cummins BJ; Dischinger HC
    Biochem Biophys Res Commun; 1991 Jul; 178(1):45-53. PubMed ID: 1648914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing.
    Ullah AH; Dischinger HC
    Biochem Biophys Res Commun; 1993 Apr; 192(2):747-53. PubMed ID: 8387289
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aspergillus ficuum extracellular phytase. Peptide mapping and purification by reverse phase chromatography.
    Ullah AH; Dischinger HC
    Ann N Y Acad Sci; 1990; 613():878-82. PubMed ID: 1963766
    [No Abstract]   [Full Text] [Related]  

  • 46. Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization.
    Rani R; Ghosh S
    Bioresour Technol; 2011 Nov; 102(22):10641-9. PubMed ID: 21945206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly efficient immobilization of glycosylated enzymes into polyurethane foams.
    Bakker M; van De Velde F; van Rantwijk F; Sheldon RA
    Biotechnol Bioeng; 2000 Nov; 70(3):342-8. PubMed ID: 10992238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate.
    Puhl AA; Greiner R; Selinger LB
    Int J Biochem Cell Biol; 2008; 40(10):2053-64. PubMed ID: 18358762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis.
    Chu HM; Guo RT; Lin TW; Chou CC; Shr HL; Lai HL; Tang TY; Cheng KJ; Selinger BL; Wang AH
    Structure; 2004 Nov; 12(11):2015-24. PubMed ID: 15530366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics.
    Liu Q; Huang Q; Lei XG; Hao Q
    Structure; 2004 Sep; 12(9):1575-83. PubMed ID: 15341723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays.
    Menezes-Blackburn D; Jorquera M; Gianfreda L; Rao M; Greiner R; Garrido E; de la Luz Mora M
    Bioresour Technol; 2011 Oct; 102(20):9360-7. PubMed ID: 21856150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697.
    Haros M; Bielecka M; Honke J; Sanz Y
    Int J Food Microbiol; 2007 Jun; 117(1):76-84. PubMed ID: 17462768
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production, purification and properties of microbial phytases.
    Pandey A; Szakacs G; Soccol CR; Rodriguez-Leon JA; Soccol VT
    Bioresour Technol; 2001 May; 77(3):203-14. PubMed ID: 11272007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.
    Reale A; Mannina L; Tremonte P; Sobolev AP; Succi M; Sorrentino E; Coppola R
    J Agric Food Chem; 2004 Oct; 52(20):6300-5. PubMed ID: 15453704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions.
    Huang H; Luo H; Wang Y; Fu D; Shao N; Wang G; Yang P; Yao B
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):417-26. PubMed ID: 18548246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel biosensors for quantitative phytic acid and phytase measurement.
    Mak WC; Ng YM; Chan C; Kwong WK; Renneberg R
    Biosens Bioelectron; 2004 Apr; 19(9):1029-35. PubMed ID: 15018958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inositol phosphate phosphatases of microbiological origin. Some properties of a partially purified bacterial (Pseudomonas sp.) phytase.
    Irving GC; Cosgrove DJ
    Aust J Biol Sci; 1971 Jun; 24(3):547-57. PubMed ID: 4328685
    [No Abstract]   [Full Text] [Related]  

  • 58. Waste vinegar residue as substrate for phytase production.
    Wang ZH; Dong XF; Zhang GQ; Tong JM; Zhang Q; Xu SZ
    Waste Manag Res; 2011 Dec; 29(12):1262-70. PubMed ID: 21447611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Survey of microorganism for the production of extracellular phytase.
    Shieh TR; Ware JH
    Appl Microbiol; 1968 Sep; 16(9):1348-51. PubMed ID: 4300171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of d-myo-inositol phosphates in 'activated' raw almonds using anion-exchange chromatography coupled with tandem mass spectrometry.
    Lee LY; Mitchell AE
    J Sci Food Agric; 2019 Jan; 99(1):117-123. PubMed ID: 29808577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.