These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2852808)

  • 61. Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics.
    Zuo R; Chang J; Yin Q; Chen L; Chen Q; Yang X; Zheng Q; Ren G; Feng H
    Microbiol Res; 2010 May; 165(4):329-35. PubMed ID: 19717291
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase.
    Cosgrove DJ
    Aust J Biol Sci; 1970 Dec; 23(6):1207-20. PubMed ID: 4322166
    [No Abstract]   [Full Text] [Related]  

  • 63. Aspergillus ficuum phytase activity is inhibited by cereal grain components.
    Bekalu ZE; Madsen CK; Dionisio G; Brinch-Pedersen H
    PLoS One; 2017; 12(5):e0176838. PubMed ID: 28472144
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reduction of Phytic Acid in Soymilk by Immobilized Phytase System.
    Chen KI; Chiang CY; Ko CY; Huang HY; Cheng KC
    J Food Sci; 2018 Dec; 83(12):2963-2969. PubMed ID: 30461023
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The hydrolysis of inositol phosphates by Aerobacter aerogenes.
    Greaves MP; Anderson G; Webley DM
    Biochim Biophys Acta; 1967 Mar; 132(2):412-8. PubMed ID: 4291648
    [No Abstract]   [Full Text] [Related]  

  • 66. Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology.
    Krishna C; Nokes SE
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):161-70. PubMed ID: 11420657
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Aspergillus ficuum phytase active site: involvement of Arg and Trp residues.
    Ullah AH; Dischinger HC
    Ann N Y Acad Sci; 1995 Mar; 750():51-7. PubMed ID: 7785880
    [No Abstract]   [Full Text] [Related]  

  • 68. Production of phosphatase by Aspergillus awamori var. kawachii in a low phosphate medium.
    Ohta Y; Ikeda K; Ueda S
    Appl Microbiol; 1968 Jul; 16(7):973-80. PubMed ID: 4298815
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Charge-switchable gold nanoparticles for enhanced enzymatic thermostability.
    Shankar S; Soni SK; Daima HK; Selvakannan PR; Khire JM; Bhargava SK; Bansal V
    Phys Chem Chem Phys; 2015 Sep; 17(33):21517-24. PubMed ID: 26219387
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microbial production of extra-cellular phytase using polystyrene as inert solid support.
    Gautam P; Sabu A; Pandey A; Szakacs G; Soccol CR
    Bioresour Technol; 2002 Jul; 83(3):229-33. PubMed ID: 12094799
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of residues involved in active-site formation in Aspergillus ficuum phytase.
    Ullah AH; Dischinger HC
    Ann N Y Acad Sci; 1992 Nov; 672():45-51. PubMed ID: 1335713
    [No Abstract]   [Full Text] [Related]  

  • 72. Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution.
    Kostrewa D; Grüninger-Leitch F; D'Arcy A; Broger C; Mitchell D; van Loon AP
    Nat Struct Biol; 1997 Mar; 4(3):185-90. PubMed ID: 9164457
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The rational design of semisynthetic peroxidases.
    van de Velde F; Könemann L; van Rantwijk F; Sheldon RA
    Biotechnol Bioeng; 2000 Jan; 67(1):87-96. PubMed ID: 10581439
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phytase: sources, preparation and exploitation.
    Dvoráková J
    Folia Microbiol (Praha); 1998; 43(4):323-38. PubMed ID: 9821286
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The enthalpy change in the hydrolysis of the phosphate esters of myo-inositol.
    Raison JK; Evans WJ
    Biochim Biophys Acta; 1968 Dec; 170(2):448-51. PubMed ID: 4303397
    [No Abstract]   [Full Text] [Related]  

  • 76. Optimization of phytase production from potato waste using Aspergillus ficuum.
    Tian M; Yuan Q
    3 Biotech; 2016 Dec; 6(2):256. PubMed ID: 28330328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inositol phosphate phosphatases of microbiological origin. Observations on the nature of the active centre of a bacterial (Pseudomonas sp.) phytase.
    Irving GC; Cosgrove DJ
    Aust J Biol Sci; 1971 Jun; 24(3):559-64. PubMed ID: 4328686
    [No Abstract]   [Full Text] [Related]  

  • 78. Free and immobilized Aspergillus oryzae SBS50 producing protease-resistant and thermostable phytase.
    Sapna ; Singh B
    3 Biotech; 2017 Jul; 7(3):213. PubMed ID: 28669072
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biomineralization of pretilachlor by free and immobilized fungal strains isolated from paddy field.
    Kwatra N; Abraham J
    Arch Microbiol; 2023 Apr; 205(5):188. PubMed ID: 37052710
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immobilization of Aspergillus clavatus in a membrane bioreactor.
    Belushkina IA; Manolov RJ; Vorobiev ED; Bezborodov AM
    Folia Microbiol (Praha); 1991; 36(1):75-80. PubMed ID: 1841853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.