BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

773 related articles for article (PubMed ID: 28528117)

  • 1. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating nonlinear elastic behavior of biodegradable shape memory elastomer and small intestinal submucosa(SIS) composites for soft tissue repair.
    Ramaraju H; Ul-Haque A; Verga AS; Bocks ML; Hollister SJ
    J Mech Behav Biomed Mater; 2020 Oct; 110():103965. PubMed ID: 32957256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration.
    Sariibrahimoglu K; Yang W; Leeuwenburgh SC; Yang F; Wolke JG; Zuo Y; Li Y; Jansen JA
    J Biomed Mater Res A; 2015 Jun; 103(6):1930-9. PubMed ID: 25203691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cell-Engineered Small Intestinal Submucosa-Based Bone Mimetic Construct for Bone Regeneration.
    Li M; Zhang C; Mao Y; Zhong Y; Zhao J
    Tissue Eng Part A; 2018 Jul; 24(13-14):1099-1111. PubMed ID: 29318958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr
    Cui W; Yang L; Ullah I; Yu K; Zhao Z; Gao X; Liu T; Liu M; Li P; Wang J; Guo X
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35026740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering.
    Ergene E; Yagci BS; Gokyer S; Eyidogan A; Aksoy EA; Yilgor Huri P
    Biomed Mater; 2019 Feb; 14(2):025014. PubMed ID: 30665203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering.
    Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M
    J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Composite Scaffold Containing Small Intestinal Submucosa and Mesoporous Bioactive Glass Exhibits High Osteogenic and Angiogenic Capacity.
    Sun T; Liu M; Yao S; Ji Y; Xiong Z; Tang K; Chen K; Yang H; Guo X
    Tissue Eng Part A; 2018 Jul; 24(13-14):1044-1056. PubMed ID: 29350101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties.
    Syed O; Kim JH; Keskin-Erdogan Z; Day RM; El-Fiqi A; Kim HW; Knowles JC
    Acta Biomater; 2019 Nov; 99():181-195. PubMed ID: 31446049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold.
    Hong Y; Huber A; Takanari K; Amoroso NJ; Hashizume R; Badylak SF; Wagner WR
    Biomaterials; 2011 May; 32(13):3387-94. PubMed ID: 21303718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites.
    Liang SL; Cook WD; Thouas GA; Chen QZ
    Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A; Palka K; Ginalska G
    J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.