These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28528218)

  • 1. Laboratory studies of ultrasonic wave response of fractures with different lengths: Anisotropy characteristics and coda analysis.
    Wang D; Qu SL; Zhao Q; Yin XY; Zhou F
    Ultrasonics; 2017 Sep; 80():101-112. PubMed ID: 28528218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental characterization of synthetic porous orthorhombic fractured medium: A physical modeling approach.
    Silva C; de Figueiredo JJS; Chichinina T; Nascimento MJS; Kirchhof L
    Ultrasonics; 2019 Apr; 94():82-91. PubMed ID: 30558812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media.
    Hamzehpour H; Asgari M; Sahimi M
    Phys Rev E; 2016 Jun; 93(6):063305. PubMed ID: 27415385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning.
    Saenger EH; Finger C; Karimpouli S; Tahmasebi P
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Parametric Study of Coda Wave Interferometry Sensitivity to Microcrack Change in a Multiple Scattering Medium.
    Ma B; Liu S; Ma Z; Wang QA; Yu Z
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.
    Wang D; Wang L; Ding P
    Ultrasonics; 2016 Aug; 70():266-74. PubMed ID: 27259119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stop-pass behavior of acoustic waves in a 1D fractured system.
    Nakagawa S; Nihei KT; Myer LR
    J Acoust Soc Am; 2000 Jan; 107(1):40-50. PubMed ID: 10641618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave propagation in disordered fractured porous media.
    Hamzehpour H; Kasani FH; Sahimi M; Sepehrinia R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023301. PubMed ID: 25353599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture.
    Nakagawa S; Pride SR; Nihei KT
    J Acoust Soc Am; 2019 Sep; 146(3):1705. PubMed ID: 31590557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional elastic wave scattering by a layer containing vertical periodic fractures.
    Nakagawa S; Nihei KT; Myer LR; Majer EL
    J Acoust Soc Am; 2003 Jun; 113(6):3012-23. PubMed ID: 12822772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking fluids in multiple scattering and highly porous materials: Toward applications in non-destructive testing and seismic monitoring.
    Thery R; Guillemot A; Abraham O; Larose E
    Ultrasonics; 2020 Mar; 102():106019. PubMed ID: 31671364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of guided mode propagation in fractured long bones.
    Xu K; Liu D; Ta D; Hu B; Wang W
    Ultrasonics; 2014 Jul; 54(5):1210-8. PubMed ID: 24139020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear coda wave interferometry for the global evaluation of damage levels in complex solids.
    Zhang Y; Tournat V; Abraham O; Durand O; Letourneur S; Le Duff A; Lascoup B
    Ultrasonics; 2017 Jan; 73():245-252. PubMed ID: 27693600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock-induced wave propagation over porous and fractured borehole zones: theory and experiments.
    Fan H; Smeulders DM
    J Acoust Soc Am; 2013 Dec; 134(6):4792. PubMed ID: 25669291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroelastic modeling of seismic boundary conditions across a fracture.
    Nakagawa S; Schoenberg MA
    J Acoust Soc Am; 2007 Aug; 122(2):831-47. PubMed ID: 17672634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple scattering of an ultrasonic shock wave in bubbly media.
    Lombard O; Viard N; Leroy V; Barrière C
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):18. PubMed ID: 29404786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical parametric study of Nonlinear Coda Wave Interferometry sensitivity to microcrack size in a multiple scattering medium.
    Chen G; Zhang Y; Abraham O; Pageot D; Chekroun M; Tournat V
    Ultrasonics; 2021 Sep; 116():106483. PubMed ID: 34126405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.