These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 28528390)
21. Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni. Oleksyn J; Karolewski P; Giertych MJ; Zytkowiak R; Reich PB; Tjoelker MG New Phytol; 1998 Oct; 140(2):239-249. PubMed ID: 33862847 [TBL] [Abstract][Full Text] [Related]
22. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function. Jackrel SL; Wootton JT Proc Biol Sci; 2015 Apr; 282(1805):. PubMed ID: 25788602 [TBL] [Abstract][Full Text] [Related]
23. Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska. Anderson MD; Taylor DL; Ruess RW Mol Ecol; 2013 Jul; 22(14):3864-77. PubMed ID: 23731390 [TBL] [Abstract][Full Text] [Related]
24. Diffusible factors involved in early interactions of actinorhizal symbiosis are modulated by the host plant but are not enough to break the host range barrier. Gabbarini LAS; Wall LG Funct Plant Biol; 2011 Sep; 38(9):671-681. PubMed ID: 32480922 [TBL] [Abstract][Full Text] [Related]
25. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365 [TBL] [Abstract][Full Text] [Related]
26. Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Orfanoudakis M; Wheeler CT; Hooker JE Mycorrhiza; 2010 Feb; 20(2):117-26. PubMed ID: 19690898 [TBL] [Abstract][Full Text] [Related]
27. 3-Pentanol glycosides from root nodules of the actinorhizal plant Alnus cremastogyne. Xu Y; Xu Y; Huang Z; Luo Y; Gao R; Xue J; Lin C; Pawlowski K; Zhou Z; Wei X Phytochemistry; 2023 Mar; 207():113582. PubMed ID: 36596436 [TBL] [Abstract][Full Text] [Related]
28. Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Gentili F; Wall LG; Huss-Danell K Ann Bot; 2006 Aug; 98(2):309-15. PubMed ID: 16735402 [TBL] [Abstract][Full Text] [Related]
29. Regulation of nodulation in the absence of N2 is different in actinorhizal plants with different infection pathways. Wall LG; Valverde C; Huss-Danell K J Exp Bot; 2003 Apr; 54(385):1253-8. PubMed ID: 12654876 [TBL] [Abstract][Full Text] [Related]
30. Growth and N2 fixation in an Alnus hirsuta (Turcz.) var. sibirica stand in Japan. Tobita H; Hasegawa SF; Yazaki K; Komatsu M; Kitao M J Biosci; 2013 Nov; 38(4):761-76. PubMed ID: 24287656 [TBL] [Abstract][Full Text] [Related]
31. Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Tateno M Oecologia; 2003 Nov; 137(3):338-43. PubMed ID: 12905061 [TBL] [Abstract][Full Text] [Related]
32. Anti-Herbivore Activity of Oregonin, a Diarylheptanoid Found in Leaves and Bark of Red Alder (Alnus rubra). Lea CS; Bradbury SG; Constabel CP J Chem Ecol; 2021 Feb; 47(2):215-226. PubMed ID: 33475940 [TBL] [Abstract][Full Text] [Related]
33. Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Lundberg P; Lundquist PO Planta; 2004 Aug; 219(4):661-72. PubMed ID: 15179512 [TBL] [Abstract][Full Text] [Related]
34. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil. Battenberg K; Wren JA; Hillman J; Edwards J; Huang L; Berry AM Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795313 [TBL] [Abstract][Full Text] [Related]
35. Neighbours in nodules: the interactions between Garneau L; Beauregard PB; Roy S Can J Microbiol; 2023 Feb; 69(2):88-102. PubMed ID: 36288608 [TBL] [Abstract][Full Text] [Related]
36. Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings. Frost CJ; Hunter MD New Phytol; 2008; 178(4):835-845. PubMed ID: 18346100 [TBL] [Abstract][Full Text] [Related]
37. Effects of O Greitner CS; Winner WE New Phytol; 1989 Apr; 111(4):647-656. PubMed ID: 33874056 [TBL] [Abstract][Full Text] [Related]
38. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. Arnebrant K; Ek H; Finlay RD; Söderström B New Phytol; 1993 Jun; 124(2):231-242. PubMed ID: 33874350 [TBL] [Abstract][Full Text] [Related]
39. Green alder (Alnus viridis) encroachment shapes microbial communities in subalpine soils and impacts its bacterial or fungal symbionts differently. Schwob G; Roy M; Manzi S; Pommier T; Fernandez MP Environ Microbiol; 2017 Aug; 19(8):3235-3250. PubMed ID: 28618146 [TBL] [Abstract][Full Text] [Related]
40. Molecular response to nitrogen starvation by Frankia alni ACN14a revealed by transcriptomics and functional analysis with a fosmid library in Escherichia coli. Lurthy T; Alloisio N; Fournier P; Anchisi S; Ponsero A; Normand P; Pujic P; Boubakri H Res Microbiol; 2018; 169(2):90-100. PubMed ID: 29378337 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]