BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 28528488)

  • 1. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae.
    Averesch NJH; Prima A; Krömer JO
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1283-1289. PubMed ID: 28528488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.
    Averesch NJ; Winter G; Krömer JO
    Microb Cell Fact; 2016 May; 15():89. PubMed ID: 27230236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Yeast
    van der Hoek SA; Darbani B; Zugaj KE; Prabhala BK; Biron MB; Randelovic M; Medina JB; Kell DB; Borodina I
    Front Bioeng Biotechnol; 2019; 7():262. PubMed ID: 31681742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Williams TC; Peng B; Vickers CE; Nielsen LK
    Metab Eng Commun; 2016 Dec; 3():142-152. PubMed ID: 29468120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies.
    Averesch NJH; Krömer JO
    Front Bioeng Biotechnol; 2018; 6():32. PubMed ID: 29632862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Bacterial Biosensor for Rapid Screening of Yeast p-Coumaric Acid Production.
    Siedler S; Khatri NK; Zsohár A; Kjærbølling I; Vogt M; Hammar P; Nielsen CF; Marienhagen J; Sommer MOA; Joensson HN
    ACS Synth Biol; 2017 Oct; 6(10):1860-1869. PubMed ID: 28532147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.
    Yu T; Zhou YJ; Wenning L; Liu Q; Krivoruchko A; Siewers V; Nielsen J; David F
    Nat Commun; 2017 May; 8():15587. PubMed ID: 28548095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors.
    Suástegui M; Yu Ng C; Chowdhury A; Sun W; Cao M; House E; Maranas CD; Shao Z
    Metab Eng; 2017 Jul; 42():134-144. PubMed ID: 28625755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.
    Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering tolerance to industrially relevant stress factors in yeast cell factories.
    Deparis Q; Claes A; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28586408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner-Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production.
    Morita K; Nomura Y; Ishii J; Matsuda F; Kondo A; Shimizu H
    J Biosci Bioeng; 2017 Sep; 124(3):263-270. PubMed ID: 28539187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular product recycling in high succinic acid producing yeast at low pH.
    Wahl SA; Bernal Martinez C; Zhao Z; van Gulik WM; Jansen MLA
    Microb Cell Fact; 2017 May; 16(1):90. PubMed ID: 28535757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cinnamic acid and p-coumaric acid are metabolized to 4-hydroxybenzoic acid by Yarrowia lipolytica.
    Konzock O; Tous-Mohedano M; Cibin I; Chen Y; Norbeck J
    AMB Express; 2023 Aug; 13(1):84. PubMed ID: 37561285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside.
    Liu H; Tian Y; Zhou Y; Kan Y; Wu T; Xiao W; Luo Y
    Microb Biotechnol; 2021 Nov; 14(6):2605-2616. PubMed ID: 32990403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis.
    Valanciene E; Jonuskiene I; Syrpas M; Augustiniene E; Matulis P; Simonavicius A; Malys N
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32517243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Economic Process Evaluation and Environmental Life-Cycle Assessment of Bio-Aromatics Production.
    Krömer JO; Ferreira RG; Petrides D; Kohlheb N
    Front Bioeng Biotechnol; 2020; 8():403. PubMed ID: 32478047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprocess Optimization for the Production of Aromatic Compounds With Metabolically Engineered Hosts: Recent Developments and Future Challenges.
    Braga A; Faria N
    Front Bioeng Biotechnol; 2020; 8():96. PubMed ID: 32154231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Biosensor for Detection of Benzoic Acid Derivatives in
    Castaño-Cerezo S; Fournié M; Urban P; Faulon JL; Truan G
    Front Bioeng Biotechnol; 2019; 7():372. PubMed ID: 31970152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.