These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 28528543)
1. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543 [TBL] [Abstract][Full Text] [Related]
2. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
3. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992 [TBL] [Abstract][Full Text] [Related]
4. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
5. Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL Nano Lett; 2011 Aug; 11(8):3341-5. PubMed ID: 21755927 [TBL] [Abstract][Full Text] [Related]
6. Nanocrystal skins with exciton funneling for photosensing. Akhavan S; Cihan AF; Bozok B; Demir HV Small; 2014 Jun; 10(12):2470-5. PubMed ID: 24599603 [TBL] [Abstract][Full Text] [Related]
7. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978 [TBL] [Abstract][Full Text] [Related]
8. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures. Golmakaniyoon S; Hernandez-Martinez PL; Demir HV; Sun XW Sci Rep; 2016 Oct; 6():34086. PubMed ID: 27698422 [TBL] [Abstract][Full Text] [Related]
9. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap. Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837 [TBL] [Abstract][Full Text] [Related]
10. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites. Bain D; Paramanik B; Sadhu S; Patra A Nanoscale; 2015 Dec; 7(48):20697-708. PubMed ID: 26603192 [TBL] [Abstract][Full Text] [Related]
11. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Cao J; Zhang H; Pi X; Li D; Yang D Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309 [TBL] [Abstract][Full Text] [Related]
12. Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures. Bujak Ł; Ishii T; Sharma DK; Hirata S; Vacha M Nanoscale; 2017 Jan; 9(4):1511-1519. PubMed ID: 28067372 [TBL] [Abstract][Full Text] [Related]
13. Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. Shi R; Cao Y; Bao Y; Zhao Y; Waterhouse GIN; Fang Z; Wu LZ; Tung CH; Yin Y; Zhang T Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497896 [TBL] [Abstract][Full Text] [Related]
14. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters. Marocico CA; Zhang X; Bradley AL J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555 [TBL] [Abstract][Full Text] [Related]
15. Plasmonic enhancement of fluorescence on silver nanoparticle films. Xu S; Cao Y; Zhou J; Wang X; Wang X; Xu W Nanotechnology; 2011 Jul; 22(27):275715. PubMed ID: 21613682 [TBL] [Abstract][Full Text] [Related]
16. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284 [TBL] [Abstract][Full Text] [Related]
17. Förster resonance energy transfer (FRET) with a donor-acceptor system adsorbed on silver or gold nanoisland films. Giorgetti E; Cicchi S; Muniz-Miranda M; Margheri G; Del Rosso T; Giusti A; Rindi A; Ghini G; Sottini S; Marcelli A; Foggi P Phys Chem Chem Phys; 2009 Nov; 11(42):9798-803. PubMed ID: 19851559 [TBL] [Abstract][Full Text] [Related]
18. Singlet exciton fission photovoltaics. Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026 [TBL] [Abstract][Full Text] [Related]
19. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly. Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153 [TBL] [Abstract][Full Text] [Related]
20. Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects. Su XR; Zhang W; Zhou L; Peng XN; Wang QQ Opt Express; 2010 Mar; 18(7):6516-21. PubMed ID: 20389674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]