BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 28528649)

  • 21. Frequency of antibiotic and heavy metal resistance, pigmentation, and plasmids in bacteria of the marine air-water interface.
    Hermansson M; Jones GW; Kjelleberg S
    Appl Environ Microbiol; 1987 Oct; 53(10):2338-42. PubMed ID: 3426213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds.
    Romero JL; Grande Burgos MJ; Pérez-Pulido R; Gálvez A; Lucas R
    Front Microbiol; 2017; 8():1650. PubMed ID: 28912764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view.
    Lynch AS
    Biochem Pharmacol; 2006 Mar; 71(7):949-56. PubMed ID: 16290174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial resistance in foodborne pathogens--a cause for concern?
    Walsh C; Fanning S
    Curr Drug Targets; 2008 Sep; 9(9):808-15. PubMed ID: 18781926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water.
    Sabry SA; Ghozlan HA; Abou-Zeid DM
    J Appl Microbiol; 1997 Feb; 82(2):245-52. PubMed ID: 12452601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole genome sequences to assess the link between antibiotic and metal resistance in three coastal marine bacteria isolated from the mummichog gastrointestinal tract.
    Lloyd NA; Nazaret S; Barkay T
    Mar Pollut Bull; 2018 Oct; 135():514-520. PubMed ID: 30301067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics.
    Bengtsson-Palme J; Hammarén R; Pal C; Östman M; Björlenius B; Flach CF; Fick J; Kristiansson E; Tysklind M; Larsson DGJ
    Sci Total Environ; 2016 Dec; 572():697-712. PubMed ID: 27542633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibiotic resistance: from Darwin to Lederberg to Keynes.
    Amábile-Cuevas CF
    Microb Drug Resist; 2013 Apr; 19(2):73-87. PubMed ID: 23046150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection of antibiotic resistance by metals in a riverine bacterial community.
    Silva I; Tacão M; Henriques I
    Chemosphere; 2021 Jan; 263():127936. PubMed ID: 33297016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics.
    Kotrange H; Najda A; Bains A; Gruszecki R; Chawla P; Tosif MM
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams.
    Wright MS; Loeffler Peltier G; Stepanauskas R; McArthur JV
    FEMS Microbiol Ecol; 2006 Nov; 58(2):293-302. PubMed ID: 17064270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical implications of multiple drug resistance efflux pumps of pathogenic bacteria.
    Rouveix B
    J Antimicrob Chemother; 2007 Jun; 59(6):1208-9. PubMed ID: 17507420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel insights into the co-selection of metal-driven antibiotic resistance in bacteria: a study of arsenic and antibiotic co-exposure.
    Haque F; Diba F; Istiaq A; Siddique MA; Mou TJ; Hossain MA; Sultana M
    Arch Microbiol; 2024 Mar; 206(4):194. PubMed ID: 38538852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach.
    Dickinson AW; Power A; Hansen MG; Brandt KK; Piliposian G; Appleby P; O'Neill PA; Jones RT; Sierocinski P; Koskella B; Vos M
    Environ Int; 2019 Nov; 132():105117. PubMed ID: 31473413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism of ROS regulation of antibiotic resistance and antimicrobial lethality.
    Ma LN; Mi HF; Xue YX; Wang D; Zhao XL
    Yi Chuan; 2016 Oct; 38(10):902-909. PubMed ID: 27806931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Antibacterial Activity of Metal Complexes Containing 1,10- phenanthroline: Potential as Alternative Therapeutics in the Era of Antibiotic Resistance.
    Viganor L; Howe O; McCarron P; McCann M; Devereux M
    Curr Top Med Chem; 2017; 17(11):1280-1302. PubMed ID: 27697043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active efflux, a common mechanism for biocide and antibiotic resistance.
    Levy SB
    J Appl Microbiol; 2002; 92 Suppl():65S-71S. PubMed ID: 12000614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antibiotic-resistant bacteria: a challenge for the food industry.
    Capita R; Alonso-Calleja C
    Crit Rev Food Sci Nutr; 2013; 53(1):11-48. PubMed ID: 23035919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa.
    Deredjian A; Colinon C; Brothier E; Favre-Bonté S; Cournoyer B; Nazaret S
    Res Microbiol; 2011 Sep; 162(7):689-700. PubMed ID: 21726631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem.
    Summers AO
    Anim Biotechnol; 2006; 17(2):125-35. PubMed ID: 17127524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.