These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28528653)
21. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Barwinska-Sendra A; Waldron KJ Adv Microb Physiol; 2017; 70():315-379. PubMed ID: 28528650 [TBL] [Abstract][Full Text] [Related]
22. Is the bond-valence method able to identify metal atoms in protein structures? Müller P; Köpke S; Sheldrick GM Acta Crystallogr D Biol Crystallogr; 2003 Jan; 59(Pt 1):32-7. PubMed ID: 12499536 [TBL] [Abstract][Full Text] [Related]
23. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors. Mirts EN; Bhagi-Damodaran A; Lu Y Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643 [TBL] [Abstract][Full Text] [Related]
24. Selective recognition of metal ions by metalloregulatory proteins. Chen PR; He C Curr Opin Chem Biol; 2008 Apr; 12(2):214-21. PubMed ID: 18258210 [TBL] [Abstract][Full Text] [Related]
25. Interfacial metal coordination in engineered protein and peptide assemblies. Sontz PA; Song WJ; Tezcan FA Curr Opin Chem Biol; 2014 Apr; 19():42-9. PubMed ID: 24780278 [TBL] [Abstract][Full Text] [Related]
26. Metal ion ligands in hyperaccumulating plants. Callahan DL; Baker AJ; Kolev SD; Wedd AG J Biol Inorg Chem; 2006 Jan; 11(1):2-12. PubMed ID: 16328457 [TBL] [Abstract][Full Text] [Related]
27. Bacterial antimicrobial metal ion resistance. Hobman JL; Crossman LC J Med Microbiol; 2015 May; 64(Pt 5):471-497. PubMed ID: 25418738 [TBL] [Abstract][Full Text] [Related]
28. Methallothioneins and their role in the metabolism and toxicity of metals. Cherian MG; Goyer RA Life Sci; 1978 Jul; 23(1):1-9. PubMed ID: 355755 [No Abstract] [Full Text] [Related]
29. Tools to study distinct metal pools in biology. New EJ Dalton Trans; 2013 Mar; 42(9):3210-9. PubMed ID: 23076679 [TBL] [Abstract][Full Text] [Related]
30. Roles of metal ions in nucleases. Dupureur CM Curr Opin Chem Biol; 2008 Apr; 12(2):250-5. PubMed ID: 18261473 [TBL] [Abstract][Full Text] [Related]
31. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies. Gogoi P; Chandravanshi M; Mandal SK; Srivastava A; Kanaujia SP J Biomol Struct Dyn; 2016 Jul; 34(7):1470-85. PubMed ID: 26248730 [TBL] [Abstract][Full Text] [Related]
32. Preface for the forum on metals in medicine and health: new opportunities and approaches to improving health. Crans DC; Meade TJ Inorg Chem; 2013 Nov; 52(21):12181-3. PubMed ID: 24187925 [No Abstract] [Full Text] [Related]
33. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination. Gamble AJ; Peacock AF Methods Mol Biol; 2014; 1216():211-31. PubMed ID: 25213418 [TBL] [Abstract][Full Text] [Related]
34. Inorganic concepts relevant to metal binding, activity, and toxicity in a biological system. Hoeschele JD; Turner JE; England MW Sci Total Environ; 1991 Dec; 109-110():477-92. PubMed ID: 1815368 [TBL] [Abstract][Full Text] [Related]
37. Molecular mechanisms of plant metal tolerance and homeostasis. Clemens S Planta; 2001 Mar; 212(4):475-86. PubMed ID: 11525504 [TBL] [Abstract][Full Text] [Related]
38. Transition metals in control of gene expression. O'Halloran TV Science; 1993 Aug; 261(5122):715-25. PubMed ID: 8342038 [TBL] [Abstract][Full Text] [Related]
39. The shielding effect of metal complexes on the binding affinities of ligands to metalloproteins. Chen D; Li Y; Guo W; Li Y; Savidge T; Li X; Fan X Phys Chem Chem Phys; 2018 Dec; 21(1):205-216. PubMed ID: 30516774 [TBL] [Abstract][Full Text] [Related]
40. Emerging principles of de novo catalyst design. Baltzer L; Nilsson J Curr Opin Biotechnol; 2001 Aug; 12(4):355-60. PubMed ID: 11551463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]